Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)aaaaa=a*111111=a*15873*7(chia hết cho 7)
b)abcabc=abc*1001=abc*91*11(chia hết cho 11)
c)aaa=a*111=a*3*37(chia hết cho 37)
d)ab+ab=10a+b+10a+b=20a+b(không có dấu hiệu nào chia hết cho 11, chứng tỏ sai đề!)
Tớ làm phần b trước nha !
Ta có : abcabc = abc000 + abc
= abc x 1000 + abc
= abc x ( 1000 + 1 )
= abc x 1001
= abc x 7 x 11 x 13
Vậy abcabc chia hết cho 7 ; 11 và 13
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7