Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a,bc = 10 : ( a+b+c )
=> a,bc x (a + b + c) = 10
=> a,bc x 100 x (a + b + c) = 10 x 100
=> abc x (a + b + c) = 1000
=> 1000 phải chia hết cho abc
=> abc thuộc Ư(1000) = {100; 125; 200;250;500}
Xét từng trường ta thấy abc = 125 thỏa mãn
Vậy a.bc = 1,25
cho ba số a,b,c biết a,bc =10:a+b+c
Ta có: a,bc = 10 : ( a+b+c )
=> a,bc x (a + b + c) = 10
=> a,bc x 100 x (a + b + c) = 10 x 100
=> abc x (a + b + c) = 1000
=> 1000 phải chia hết cho abc
=> abc thuộc Ư(1000) = {100; 125; 200;250;500}
Xét từng trường ta thấy abc = 125 thỏa mãn
Vậy a.bc = 1,25
nhé !
\(a,bc=10:\left(a+b+c\right)\\ \Rightarrow a,bc.\left(a+b+c\right)=10\\ \Rightarrow a,bc.100.\left(a+b+c\right)=10.100\\ \Rightarrow abc.\left(a+b+c\right)=1000\)
Từ đây suy ra abc thuộc Ư(1000)=\(\left\{100;125;200;250;500;\right\}\)
Thử tất cả các đáp án vào bài toán chỉ có 125 thỏa :
Vậy a,bc=1,25
TL : 1,25=10:(1+2+5)
Xin lỗi tớ không viết gạch ngang trên đầu
Ta có: a,bc = 10 : ( a+b+c )
=> a,bc x (a + b + c) = 10
=> a,bc x 100 x (a + b + c) = 10 x 100
=> abc x (a + b + c) = 1000
=> 1000 phải chia hết cho abc
=> abc thuộc Ư(1000) = {100; 125; 200;250;500}
Xét từng trường ta thấy abc = 125 thỏa mãn đề bài
Vậy a.bc = 1,25
abc x ( a + b + c ) = 100 )
đổi 100 = 1,25
Vay :abc la : 1,25
Đáp số : 25 ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Lời giải:
$ab-ac+bc-c^2=-1$
$\Leftrightarrow (ab-ac)+(bc-c^2)=-1$
$\Leftrightarrow a(b-c)+c(b-c)=-1$
$\Leftrightarrow (a+c)(b-c)=-1$
Do $a,b,c\in\mathbb{Z}$ nên $a+c,b-c\in\mathbb{Z}$
Do đó có 2 TH xảy ra.
TH1: $a+c=1; b-c=-1$
$\Rightarrow a+c+b-c=0$
$\Rightarrow a+b=0$ nên $a,b$ là 2 số đối nhau (đpcm)
TH2: $a+c=-1; b-c=1$: hoàn toàn tương tự.
Vậy........
ab−ac+bc−c2=−1ab−ac+bc−c2=−1
⇔(ab−ac)+(bc−c2)=−1⇔(ab−ac)+(bc−c2)=−1
⇔a(b−c)+c(b−c)=−1⇔a(b−c)+c(b−c)=−1
⇔(a+c)(b−c)=−1⇔(a+c)(b−c)=−1
Do a,b,c∈Za,b,c∈Z nên a+c,b−c∈Za+c,b−c∈Z
Do đó có 2 TH xảy ra.
TH1: a+c=1;b−c=−1a+c=1;b−c=−1
⇒a+c+b−c=0⇒a+c+b−c=0
⇒a+b=0⇒a+b=0 nên a,ba,b là 2 số đối nhau (đpcm)
TH2: a+c=−1;b−c=1a+c=−1;b−c=1: hoàn toàn tương tự.
Vậy........
P = ab-a^2-ba+bc-bc = -a^2
Vì a thuộc N , a khác 0 nên a > 0 => a^2 > 0 => P = -a^2 < 0
=> ĐPCM
k mk nha
Vì a,b,c\(\in N\)nên áp dụng tính chất phân phối của phép nhân đối với phép cộng và phép trừ,ta có:
\(a\left(b-a\right)=a.b-a.a=ab-a^2;b\left(a-c\right)=ba-bc=ab-bc\)
Do đó: \(P=\left(ab-a^2\right)-\left(ab-bc\right)-bc\)
\(=ab-a^2-ab+bc-bc\) (quy tắc bỏ dấu ngoặc)
\(=\left(ab-ab\right)+\left(bc-bc\right)-a^2\)
\(=0+0-a^2\)
\(=-a^2\)
Vì a\(\ne\)0 nên\(a^2\)>0,do đó số đối của \(a^2\)nhỏ hơn 0, hay \(-a^2\)<0
Vậy\(P< 0\),tức là \(P\) luôn có giá trị nguyên âm.
a = 2;b= (-2);c= 3
Thay : a+b+c=2+(-2)+3
. =[2+(-2)]+3
=0+3=3
B)vì a và b là 2 số đối nhau nên ta có :
a =2;b= (-2) và là 2số đối nhau vì
|-2|=2