K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

Giả sử rằng \(a+b+c+d\) là hợp số

Ta dễ có được: \(a^n+b^n+c^n+d^n-\left(a+b+c+d\right)⋮2\)

Mà \(a^n+b^n+c^n+d^n>2\rightarrow a^n+b^n+c^n+d^n\) là hợp số

Xét trường hợp \(a+b+c+d\) là số nguyên tố

Đặt \(a+b+c+d=p\Rightarrow a=p-b-c-d\Rightarrow ab=pb-b^2-bc-db\)

\(\Leftrightarrow cd=pb-b^2-bc-db\Leftrightarrow\left(b+c\right)\left(b+d\right)=pb\)

Do p là số nguyên tố nên \(\orbr{\begin{cases}b+c⋮p\\b+d⋮p\end{cases}}\Rightarrow b+c>a+b+c+d\left(v\right)b+d>a+b+c+d\) * vô lý *

Vậy ta có đpcm

Một bài tập ứng dụng của bài toán trên ( được coi là bổ đề )

Tìm các số nguyên dương a;b thỏa mãn \(a^3+3\) là số chính phương và \(a^2+2\left(a+b\right)\) là số nguyên tố

^_^

7 tháng 9 2021

Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b cùng lẻ ⇒ d=b-a chia hết cho 2  (1)

Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b,c không chia hết cho 3 

d chia 3 có số dư là 0,1,2                                        

TH1: d=3k+1 (k∈ N)

Khi đó: b=a+3k+1

            c= b+d = a+6k+2

Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 ⇒ c chia hết cho 3 (loại)

Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 ⇒ b chia hết cho 3 (loại)

TH2: d=3k+2 (k∈N)

Khi đó b= a+3k+2

           c= a+6k+4=a+1+6k+3

Tương tự như TH1 ⇒ loại

Do đó d chia hết cho 3 (2)

Từ (1),(2) suy ra d chia hết cho 2.3 =6 [ vì (2,3)=1] 

Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b cùng lẻ ⇒ d=b-a chia hết cho 2  (1)

Vì a,b,c là 3 số nguyên tố >3 ⇒ a,b,c không chia hết cho 3 

d chia 3 có số dư là 0,1,2                                        

TH1: d=3k+1 (k∈ N)

Khi đó: b=a+3k+1

            c= b+d = a+6k+2

Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 ⇒ c chia hết cho 3 (loại)

Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 ⇒ b chia hết cho 3 (loại)

TH2: d=3k+2 (k∈N)

Khi đó b= a+3k+2

           c= a+6k+4=a+1+6k+3

Tương tự như TH1 ⇒ loại

Do đó d chia hết cho 3 (2)

Từ (1),(2) suy ra d chia hết cho 2.3 =6 [ vì (2,3)=1] 

     Chúc bạn học tốt ^^ 

22 tháng 10 2017

Ta có:

ab = bc

\(\Rightarrow\) a = c (1)

bc = cd

\(\Rightarrow\) b = d (2)

cd = de

\(\Rightarrow\) c = e (3)

de = ea

\(\Rightarrow\) d = a (4)

ea = ab

\(\Rightarrow\) e = b (5)

Từ (1), (2), (3), (4), (5) \(\Rightarrow\) a = b = c = d = e

\(\Rightarrow\) ĐPCM

22 tháng 10 2017

Mấy bài rồi?hihi

FIGHTING!!!haha