Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm có dạng abc
ta có :
\(abc=5\times bc\text{ nên }a\times100=4bc\)
hay \(a\times25=bc\) vậy ta có các số thỏa mãn là : \(125,250,375\)
Gọi số cần tìm là abc (b,c ∈ N ; a ∈ N*)
Vì khi xóa đi chữ số hàng trăm của một số tự nhiên có 3 chữ số thì số đó giảm đi 5 lần
......~> 5.bc = abc
....<~> 5.bc = 100.a + bc
....<~> 4.bc = 100.a
....<~> bc = 25.a
mà bc là số có 2 chữ số và 25.a lớn nhất là 99
= > a ∈ { 1;2;3 }
* a = 1
......=> bc = 25
......=> số cần tìm abc là 125
* a = 2
......= > bc = 25.2 = 50
......= > số cần tìm abc là 250
* a = 3
.......~> bc = 25.3 = 75
.......~> số cần tìm abc là 375
Do đó 125 hoặc 250 hoặc 375 là các số cần tìm
Nếu b là số chẵn thì 7 x b + 3 có kết quả là số lẻ.
Nếu b là số lẻ thì 7 x b + 3 có kết quả là số chẵn.
Vậy trường hợp c = 5 không xảy ra.
Gọi số cần tìm là ab ( a, b khác 0 < 10 )
Số mới là 2ab2
Theo đề bài ta có :
ab x 36 = 2ab2
ab x 35 = 2002 + ab x 10
ab x 36 - ab x 10 = 2002
ab x ( 36 - 10 ) = 2002
ab x 26 = 2002
ab = 2002 : 26
ab = 77
Vậy số cần tìm là 77
k mk nha
Mk cảm ơn các bạn nhiều
Thank you very much
( ^ _ ^ )
Gọi số có 3 chữ số là abc, xóa chữ số hàng trăm thì được bc.
Ta có : abc = bc x 7
a x 100 + bc = bc x 7
a x 100 = bc x 6
a x 50 = bc x 3
bc chia hết cho 30
= > bc = 0 hoặc bc = 50
Vì bc > 0 ( nếu bc = 0 => a = 0 ) nên bc = 50, a = 3
Số cần tìm là 350
tk nha
1) Giải
Gọi số đó là abcd. Theo đề ta có :
abcd ab 4455 - Từ đây suy ra a = 4. Vậy có 2 trường hợp: có nhớ và không nhớ. Nếu là trường hợp 1 thì c = 0, từ đó b = 5, d = 0. Vậy 4500 - 45 = 4455 ( đúng ). Trong trường hợp 2 thì dễ dàng tìm được c = 9, b = 4, d = 9. Ta có : 4499 - 44 = 4455 ( đúng ). Vậy có 2 đáp án. Đáp số : 4500 và 4499
2) Giải :
Gọi số đó là abc. Theo đề ta có :
abc bc 7 Vậy c có thể là 5 hoặc 0. b chỉ có thể là 5 ( nếu b = 0 thì không đúng với yêu cầu ). Vậy số đó là : 7 50 = 350 Đáp số : 350
gọi số cần tìm là abc (a>0, a;b;c<10)
theo bài ra ta có
bc . 5 = abc
b.10+c.5=a.100+b.10+c
c.5=a.100+c(bỏ hai vế đi b.10)