Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a chia hết thì cách giải là a chia hết 1.2.....50 suy ra a chia hết cho 2,cho 3,.....,cho 50
suy ra a+2 là hợp số a chia hết 2,2chia hết cho 2
a+3 là hợp số a chia hết cho 3, 3 chia hết cho 3
.....................................................................
a+ 50 là hợp số a chia hết cho 50 , 50 chia hết cho 50
a=15! chia hết cho 2
Nên a+2 chia hết cho 2 mà a+2>2 nên a có nhiều hơn 2 ước và là hợp số
a=15! chia hết cho 3
nên a+3 chia hết cho 3 mà a+3>3 nên a+3 có nhiều hơn 2 ước và là hợp số
......
a=15! chia hết cho 15
a+15 chia hết cho 15 nên a+15 là hợp số
b) Tương tự phần a
c có
Đặt c=2016!
c+2;c+3;c+4;..............;c+2016 là hợp số
mà dãy trên là 2015 số liên tiếp
Vậy tồn tại 2015 số liên tiếp là hợp số
Vì \(a=1\cdot2\cdot3...100\cdot101=2k\Rightarrow a+2=2\left(k+1\right)\)là hợp số (\(k\in N\))
Tương tự có a+2, a+3, a+4, ..., a+101 cũng là hợp số \(\RightarrowĐpcm\)
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
Do \(a=1\times2\times3\times...\times50\) nên a chia hết cho 2, 3, 4, ..., 50 và \(a>50\)
Vậy thì áp dụng tính chất chia hết của một tổng ta có:
\(a+2>2\) và a + 2 chia hết cho 2. Vậy a + 2 là hợp số.
\(a+3>3\) và a + 3 chia hết cho 3. Vậy a + 3 là hợp số.
Tương tự ta có a + 4, a + 5, ... a + 50 đều là các hợp số.
Vì a = 1 x 2 x 3 x ... x 50
nên a \(⋮\)cho 2 ; 3 ; 4 ; 5 ... 50 và a > 50
Áp dụng tích chất ...
Ta có : a + 2 > 2 ; a + 2\(⋮\)2 => a + 2 sẽ là hợp số .
a + 3 > 3 ; a + 3 \(⋮\)3 => a + 3 cũng là hợp số
Ta làm tương tự với các tổng còn lại