\(\dfrac{1}{\sqrt{3}}\) với 0 < a < \(\dfrac{\pi}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

Với \(sina=\dfrac{1}{\sqrt{3}}\) với \(0< a< \dfrac{\pi}{2}\)

\(sin^2a+cos^2a=1\)

\(\Leftrightarrow cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{1}{3}}=\sqrt{\dfrac{2}{3}}\)

\(cos\left(a+\dfrac{\pi}{3}\right)=cosa.cos\dfrac{\pi}{3}-sina.sin\dfrac{\pi}{3}=\sqrt{\dfrac{2}{3}}.\dfrac{1}{2}-\dfrac{1}{\sqrt{3}}.\dfrac{\sqrt{3}}{2}=-0.09\)

30 tháng 3 2017

undefined

30 tháng 3 2017

Làm hay thế :))

11 tháng 5 2017

Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha,cos\alpha< 0;tan\alpha,cot\alpha< 0\).
\(cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\left(\dfrac{\pi}{2}-\alpha\right)=sin\alpha< 0\).
\(sin\left(\dfrac{\pi}{2}+\alpha\right)=cos\alpha< 0\).
\(tan\left(\dfrac{3\pi}{2}-\alpha\right)=tan\left(\dfrac{3\pi}{2}-\alpha-2\pi\right)\)\(=tan\left(-\dfrac{\pi}{2}-\alpha\right)\)\(=-tan\left(\dfrac{\pi}{2}+\alpha\right)=cot\left(\alpha\right)>0\).
\(cot\left(\alpha+\pi\right)=cot\left(\alpha\right)>0\).

15 tháng 4 2017

Với 0 < α < :

a) sin(α - π) < 0; b) cos( - α) < 0;

c) tan(α + π) > 0; d) cot(α + ) < 0

11 tháng 5 2017

\(0< \alpha< \dfrac{\pi}{2}\) nên các giá trị lượng giác của \(\alpha\) đều dương.
a) \(sin\left(\alpha-\pi\right)=-sin\left(\pi-\alpha\right)=-sin\alpha< 0\).
b) \(cos\left(\dfrac{3\pi}{2}-\alpha\right)=cos\left(\dfrac{3\pi}{2}-\alpha-2\pi\right)=cos\left(-\dfrac{\pi}{2}-\alpha\right)\)
\(=cos\left(\dfrac{\pi}{2}+\alpha\right)=-sin\alpha< 0\).
c) \(tan\left(\alpha+\pi\right)=tan\alpha>0\).
d) \(cot\left(\alpha+\dfrac{\pi}{2}\right)=-tan\alpha< 0\).

30 tháng 3 2017

Hỏi đáp Toán

10 tháng 5 2017

a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).

10 tháng 5 2017

b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).

30 tháng 3 2017

undefined

11 tháng 5 2017

b) Do \(0< \alpha< \dfrac{\pi}{2}\) nên các giá trị lượng giác của \(\alpha\) đều dương.
Vì vậy:
\(cos\alpha=\sqrt{1-0,6^2}=\dfrac{4}{5}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=0,6:\dfrac{4}{5}=0,75;cot\alpha=1:tan\alpha=\dfrac{4}{3}\).

11 tháng 5 2017

Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(sin\alpha>0;tan\alpha< 0;cot\alpha< 0\).
\(sin\alpha=\sqrt{1-cos^2\alpha}=\dfrac{\sqrt{51}}{10}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\sqrt{51}}{10}:\left(-0,7\right)=-\dfrac{\sqrt{51}}{7}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{-7}{\sqrt{51}}\).

30 tháng 3 2017

​ta có \(sin^2a+cos^2a=1\Rightarrow sina=\pm\sqrt{1-cos^2a}=\pm\sqrt{1-\left(\dfrac{-\sqrt{5}}{3}\right)^2}=\pm\dfrac{2}{3}\)

​vì \(\Pi< a< \dfrac{3\Pi}{2}\Rightarrow sina< 0\) \(\Rightarrow sina=\dfrac{-2}{3}\)

lại có \(tana=\dfrac{sina}{cosa}=\dfrac{\dfrac{-2}{3}}{\dfrac{-\sqrt{5}}{3}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

30 tháng 3 2017

\(\pi< a< \dfrac{3\pi}{2}\) nên \(\sin a< 0\)\(\tan a>0\)

\(\cos a=-\dfrac{\sqrt{5}}{3}\) nên \(\sin a=-\dfrac{2}{3}\)

Vậy \(\tan a=\dfrac{2}{\sqrt{5}}\)

15 tháng 4 2017

a) Do 0 < α < nên sinα > 0, tanα > 0, cotα > 0

sinα =

cotα = ; tanα =

b) π < α < nên sinα < 0, cosα < 0, tanα > 0, cotα > 0

cosα = -√(1 - sin2 α) = -√(1 - 0,49) = -√0,51 ≈ -0,7141

tanα ≈ 0,9802; cotα ≈ 1,0202.

c) < α < π nên sinα > 0, cosα < 0, tanα < 0, cotα < 0

cosα = ≈ -0,4229.

sinα =

cotα = -

d) Vì < α < 2π nên sinα < 0, cosα > 0, tanα < 0, cotα < 0

Ta có: tanα =

sinα =

cosα =

17 tháng 6 2018

điều kiện : \(\dfrac{\pi}{2}\) < α < \(\pi\) (1)

\(\sin^2\dfrac{\alpha}{2}+\cos^2\dfrac{\alpha}{2}=1\)

\(\left(\dfrac{2}{\sqrt{5}}\right)^2+\cos^2\dfrac{\alpha}{2}=1\)

\(\cos\dfrac{\alpha}{2}=\pm\dfrac{1}{\sqrt{5}}\)

Do (1) nên ta có \(\dfrac{\pi}{4}< \dfrac{\alpha}{2}< \dfrac{\pi}{2}\): \(\cos\dfrac{\alpha}{2}>0\)\(\cos\dfrac{\alpha}{2}=\dfrac{1}{\sqrt{5}}\)\(\tan\dfrac{\alpha}{2}=\dfrac{\sin\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}}=\dfrac{\dfrac{2}{\sqrt{5}}}{\dfrac{1}{\sqrt{5}}}=2\)

Khi đó ta có:

A = \(\dfrac{\tan\dfrac{\alpha}{2}-\tan\dfrac{\pi}{4}}{1+\tan\dfrac{\alpha}{2}.\tan\dfrac{\pi}{4}}\) = \(\dfrac{2-1}{1+2.1}\) =\(\dfrac{1}{3}\)

VẬY..............................