K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

Ta có : 

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=50.\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)( có 50 số \(\frac{1}{100}\)

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~

15 tháng 3 2018

camon bạn 

14 tháng 3 2018

Ta có : 

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=50.\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~

14 tháng 3 2018

\(S>\frac{1}{100}\cdot50=\frac{1}{2}\)

4 tháng 3 2016

bằng nhau <3 nhé !

15 tháng 3 2018

Mấy bài kia mình giải cho bạn rùi bây giờ mk giải bài 4 nhá 

Gọi số nguyên cần tìm là \(a\) theo đề bài ta có : 

\(\frac{151-a}{161-a}=\frac{21}{26}\)

\(\Rightarrow\)\(21\left(161-a\right)=26\left(151-a\right)\)

\(\Rightarrow\)\(3381-21a=3926-26a\)

\(\Rightarrow\)\(-21a+26a=3926-3381\)

\(\Rightarrow\)\(5a=545\)

\(\Rightarrow\)\(a=\frac{545}{5}\)

\(\Rightarrow\)\(a=109\)

Vậy số nguyên cần tìm là \(109\)

Chúc bạn học tốt ~

15 tháng 3 2018

thanks b

2 tháng 4 2019

\(\frac{\frac{4}{17}-\frac{4}{45}+\frac{4}{156}}{\frac{3}{17}-\frac{3}{45}+\frac{3}{156}}=\frac{4.\left(\frac{1}{17}-\frac{1}{45}+\frac{1}{156}\right)}{3.\left(\frac{1}{17}-\frac{1}{45}+\frac{1}{156}\right)}=\frac{4}{3}\)

2 tháng 4 2019

thanks Le Tai Bao Chau nha

27 tháng 4 2018

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{101}+\frac{1}{102}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{51}\)

\(=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)

\(=VP\)

23 tháng 2 2020

Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)

Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)

23 tháng 3 2016

Ta có 51/2.52/2...100/2

       = 1.2.3....100/1.2...50.2.2...2 (nhân cả tử và mẫu với 1.2.3...50)

      = 1.2.3...100/(1.2)(2.2)(3.2)...(50.2)

      = 1.2.3...100/2.4.6...100

      = 1.3.5...99 => đpcm nhớ giữ lời hứa đấy