Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+2^3+...+2^{100}\)
\(2S=2+2^2+2^3+2^4+...+2^{101}\)\(2S-S=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(S=2^{101}-1\)
Mk chỉ tính ra được S thui,nếu được thì bn làm nốt phần còn lại nhé
Chỉ gợi ý đến đó thui nhưng bn cũng nhớ phải k cho mk đó
\(S=1+2+2^2+....+2^{100}\)
\(\Leftrightarrow2A=2+2^2+2^3+...+2^{101}\)
\(\Rightarrow2A-A=2^{101}-1\)
\(\Rightarrow A=2^{201}-1=4^{50}.2-1=\overline{......6}.2-1=\overline{.......2}-1=\overline{......1}\) chia 5 dư 1
S = 1 + ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 398 + 399 + 3100 )
= 1 + 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + .... + 398 ( 1 + 3 + 32 )
= 1 + 3 ( 1 + 3 + 9 ) + 34 ( 1 + 3 + 9 ) + ..... + 398 ( 1 + 3 + 9 )
= 1 + 3.13 + 34 .13 + .... + 398.13
= 1 + 13 ( 3 + 34 + ... + 398 )
Vì 13 ( 3 + 34 + ... + 398 ) chia hét cho 13 => 1 + 13 ( 3 + 34 + ... + 398 ) chia 13 dư 1
hay S chia 13 dư 1
Sao cô giáo minh lại bảo số dư là 4 cơ:
ta có 1+3+3\(^2\)+3\(^3\)+...+3\(^{100}\)
S=(1+3)+(3\(^2\)+3\(^3\))+..+(3\(^{99}\)+3\(^{100}\))
=4.13.(3\(^2\)+...+3\(^{98}\))
Vậy S chia cho 13 dư4
a. Ta có :
\(S=1-3+3^2-3^3+..........+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+............+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1\left(1-3+3^2-3^3\right)+............+3^{96}\left(1-3+3^2-3^3\right)\)
\(=1.\left(-20\right)+..........+3^{96}\left(-20\right)\)
\(=\left(-20\right)\left(1+......+3^{96}\right)⋮-20\)
\(\Leftrightarrow S\) là \(B\left(-20\right)\)
b. Ta có :
\(S=1-3+3^2-3^3+............+3^{98}-3^{99}\)
\(\Leftrightarrow3S=3-3^2+3^3-3^4+...............+3^{99}-3^{100}\)
\(\Leftrightarrow3S+S=\left(3-3^2+3^3-......-3^{100}\right)+\left(1-3+.....+3^{98}-3^{99}\right)\)
\(\Leftrightarrow4S=1-3^{100}\)
\(\Leftrightarrow S=\dfrac{1-3^{100}}{4}\)
Mà \(S\in B\left(-20\right)\Leftrightarrow S\in Z\)
\(\Leftrightarrow1-3^{100}⋮4\)
Hay \(3^{100}-1⋮4\)
\(\Leftrightarrow3^{100}:4\left(dư1\right)\rightarrowđpcm\)
Giải:
a) Ta có:
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)
\(=1.\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)
\(=-20.\left(1+3^4+...+3^{96}\right)\)
\(\Rightarrow S⋮-20\) Hay \(S\in B\left(-20\right)\) (Đpcm)
b) Ta có:
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(\Rightarrow3S+S=\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)+\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)\)
\(\Rightarrow4S=1-3^{100}\)
\(\Rightarrow S=\dfrac{1-3^{100}}{4}\)
Mà \(S\in B\left(-20\right)\Rightarrow S\in Z\)
\(\Leftrightarrow1-3^{100}⋮4\) Hay \(3^{100}-1⋮4\Rightarrow3^{100}\div4\) dư \(1\)
Vậy \(3^{100}\) chia cho \(4\) dư \(1\) (Đpcm)
S=1+2+22+23+.....+297+298+299
S=20+2+22+23+.....+297+298+299
2S=2.(20+2+22+23+.....+297+298+299)
2S=21+22+23+24+....+298+299+2100
2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)
S=2100-20
S=2100-1
bS=1+2+22+23+.....+297+298+299
S=(1+2)+(22+23)+...+(296+297)+(298+299)
S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)
S=3+22.3+....+296.3+298.3
S=3.(1+22+.....+296+298)\(⋮\)3
Vậy S\(⋮\)3
c Ta có:S=2100-1
2100=24.25=(24)25
Ta có: 24 tân cùng là 6
=>(24)25 tận cùng là 6
Hay 2100=(24)25 tận cùng là 6
=>2100-1 tận cùng là 5
Vậy S tận cùng là 5
Chúc bn học tốt
a, S= 1+2+22(1+2+22)+25(1+2+22) +....+298(1+2+22)
1+2+22=7
S=3+7a+7b+....+7k => Schia 7 dư 3
b,S= 1+2(1+22+23+24+25)+27(1+22+23+24+25)+....+295(1+22+23+24+25)
mà (1+22+23+24+25)=63 chia hết cho 9
=>S=1+9c+9d+...+9t
=> S chia 9 dư 1
á ghi lộn
ko phải 1+22+23+24+ 25 đâu
là 1+2+22+23+24+ 25
làm lại câu b nè
S= 1+2+22+23+24+25(1+2+22+23+24+ 25)+....+294(1+2+22+23+24+ 25)
(1+2+22+23+24+ 25)=63 chia hết cho 9
S=55+9c+9d+...+9g
55 chia 9 dư 1
=>S chia 9 dư1