\(1+2+2^2+.......+2^{100}\)

Tìm số dư của phép chia :

a) S : 7 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

a, S= 1+2+22(1+2+22)+25(1+2+22) +....+298(1+2+22)

1+2+22=7

S=3+7a+7b+....+7k => Schia 7 dư 3

b,S= 1+2(1+22+23+24+25)+27(1+22+23+24+25)+....+295(1+22+23+24+25)

mà (1+22+23+24+25)=63 chia hết cho 9

=>S=1+9c+9d+...+9t

=> S chia 9 dư 1

14 tháng 8 2017

á ghi lộn 

ko phải 1+22+23+24+ 2 đâu

là 1+2+22+23+24+ 25

làm lại câu b nè

S= 1+2+22+23+24+25(1+2+22+23+24+ 25)+....+294(1+2+22+23+24+ 25)

(1+2+22+23+24+ 25)=63 chia hết cho 9

S=55+9c+9d+...+9g

55 chia 9 dư 1

=>S chia 9 dư1

15 tháng 8 2017

\(S=1+2+2^2+2^3+...+2^{100}\)

\(2S=2+2^2+2^3+2^4+...+2^{101}\)\(2S-S=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)

\(S=2^{101}-1\)

Mk chỉ tính ra được S thui,nếu được thì bn làm nốt phần còn lại nhé

Chỉ gợi ý đến đó thui nhưng bn cũng nhớ phải k cho mk đó

15 tháng 8 2017

\(S=1+2+2^2+....+2^{100}\)

\(\Leftrightarrow2A=2+2^2+2^3+...+2^{101}\)

\(\Rightarrow2A-A=2^{101}-1\)

\(\Rightarrow A=2^{201}-1=4^{50}.2-1=\overline{......6}.2-1=\overline{.......2}-1=\overline{......1}\) chia 5 dư 1

19 tháng 12 2016

S = 1 + ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 398 + 399 + 3100 )

= 1 + 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + .... + 398 ( 1 + 3 + 32 )

= 1 + 3 ( 1 + 3 + 9 ) + 34 ( 1 + 3 + 9 ) + ..... + 398 ( 1 + 3 + 9 )

= 1 + 3.13 + 34 .13 +  .... + 398.13

= 1 + 13 ( 3 + 34 + ... + 398 ) 

Vì 13 ( 3 + 34 + ... + 398 ) chia hét cho 13 => 1 + 13 ( 3 + 34 + ... + 398 ) chia 13 dư 1

hay S chia 13 dư 1

21 tháng 12 2016

Sao cô giáo minh lại bảo số dư là 4 cơ:

ta có 1+3+3\(^2\)+3\(^3\)+...+3\(^{100}\)

S=(1+3)+(3\(^2\)+3\(^3\))+..+(3\(^{99}\)+3\(^{100}\))

=4.13.(3\(^2\)+...+3\(^{98}\))

Vậy S chia cho 13 dư4

1. Tính bằng cách hợp lý a) \(\frac{-1}{5}\cdot\frac{6}{7}+\frac{3}{7}\cdot\frac{3}{5}+\frac{2^5\cdot27}{3^3\cdot64}\) b) S = \(2+2^2+2^3+...+2^9\)2. a) Tìm x biết \(\frac{x+350}{x}+315=92\cdot4-27\)b) Tìm x,y là số nguyên biết \(\frac{2x+1}{3}=\frac{2}{y}\)3.a) Viết các phân số tự nhiên liên tiếp từ 10 đến 99 ta được số M. Hỏi M có chia hết cho 3, chia hết cho 9 không ?b) Số tự nhiên a chia cho 5 dư 3, chia 9 dư 5, chia 7 dư 4....
Đọc tiếp

1. Tính bằng cách hợp lý

 a) \(\frac{-1}{5}\cdot\frac{6}{7}+\frac{3}{7}\cdot\frac{3}{5}+\frac{2^5\cdot27}{3^3\cdot64}\)

 b) S = \(2+2^2+2^3+...+2^9\)

2. 

a) Tìm x biết \(\frac{x+350}{x}+315=92\cdot4-27\)

b) Tìm x,y là số nguyên biết \(\frac{2x+1}{3}=\frac{2}{y}\)

3.

a) Viết các phân số tự nhiên liên tiếp từ 10 đến 99 ta được số M. Hỏi M có chia hết cho 3, chia hết cho 9 không ?

b) Số tự nhiên a chia cho 5 dư 3, chia 9 dư 5, chia 7 dư 4. Tìm a biết a nhỏ nhất.

4. 

So sánh S và 1 biết S= \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)

5. Cho xOy kề bù với góc yOz, biết góc yOz gấp đôi yOx.

a) Tính số đo mỗi góc

b) Gọi Om là tia phân giác của góc yOz. Tia Oy có là tia phân giác của góc xOm không ? Vì sao ?

c. Vẽ tia Ot sao cho xOt = 20 độ. Tính góc yOt

6.Cho 5 điểm A, B, C, D, E. Cứ đi qua 2 điểm ta vẽ 1 đoạn thẳng. Gọi m là hệ số tam giác tạo thành.

a) Tính giá trị lớn nhất của m

b) Tính giá trị nhỏ nhất của m

2
12 tháng 4 2017

nhìn thôi đã ko muốn làm

12 tháng 4 2017

vậy còn cách đang từng câu hỏi 1 thôi

11 tháng 8 2017

a. Ta có :

\(S=1-3+3^2-3^3+..........+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+............+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1\left(1-3+3^2-3^3\right)+............+3^{96}\left(1-3+3^2-3^3\right)\)

\(=1.\left(-20\right)+..........+3^{96}\left(-20\right)\)

\(=\left(-20\right)\left(1+......+3^{96}\right)⋮-20\)

\(\Leftrightarrow S\)\(B\left(-20\right)\)

b. Ta có :

\(S=1-3+3^2-3^3+............+3^{98}-3^{99}\)

\(\Leftrightarrow3S=3-3^2+3^3-3^4+...............+3^{99}-3^{100}\)

\(\Leftrightarrow3S+S=\left(3-3^2+3^3-......-3^{100}\right)+\left(1-3+.....+3^{98}-3^{99}\right)\)

\(\Leftrightarrow4S=1-3^{100}\)

\(\Leftrightarrow S=\dfrac{1-3^{100}}{4}\)

\(S\in B\left(-20\right)\Leftrightarrow S\in Z\)

\(\Leftrightarrow1-3^{100}⋮4\)

Hay \(3^{100}-1⋮4\)

\(\Leftrightarrow3^{100}:4\left(dư1\right)\rightarrowđpcm\)

14 tháng 4 2017

Giải:

a) Ta có:

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=1.\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)

\(=-20.\left(1+3^4+...+3^{96}\right)\)

\(\Rightarrow S⋮-20\) Hay \(S\in B\left(-20\right)\) (Đpcm)

b) Ta có:

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(\Rightarrow3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(\Rightarrow3S+S=\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)+\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)\)

\(\Rightarrow4S=1-3^{100}\)

\(\Rightarrow S=\dfrac{1-3^{100}}{4}\)

\(S\in B\left(-20\right)\Rightarrow S\in Z\)

\(\Leftrightarrow1-3^{100}⋮4\) Hay \(3^{100}-1⋮4\Rightarrow3^{100}\div4\)\(1\)

Vậy \(3^{100}\) chia cho \(4\)\(1\) (Đpcm)

S=1+2+22+23+.....+297+298+299

S=20+2+22+23+.....+297+298+299

2S=2.(20+2+22+23+.....+297+298+299)

2S=21+22+23+24+....+298+299+2100

2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)

S=2100-20

S=2100-1

bS=1+2+22+23+.....+297+298+299

 S=(1+2)+(22+23)+...+(296+297)+(298+299)

S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)

S=3+22.3+....+296.3+298.3

S=3.(1+22+.....+296+298)\(⋮\)3

Vậy S\(⋮\)

c Ta có:S=2100-1

2100=24.25=(24)25

Ta có: 24 tân cùng là 6

=>(24)25 tận cùng là 6

Hay 2100=(24)25 tận cùng là 6

=>2100-1 tận cùng là 5

Vậy S tận cùng là 5

Chúc bn học tốt