K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2016

sai đề , ai thấy sai đề tick mk nha

2 tháng 5 2017

 c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)

2 tháng 5 2017

S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)

  =780+54(5+52+53+54)+...........+52008(5+52+53+54)

  =65*12 + 54*65*12 + .......... + 52008*65*12

  =65*12(1+54+...+52008) chia hết cho 65

=> S chia hết cho 65

9 tháng 4 2015

đặt n = 3k+r (với r = 0, 1, 2) 
2^n = 2^(3k+r) = 8^k.2^r 
8 chia 7 dư 1 nên 8^k chia 7 dư 1 
* nếu r = 0 => 2^n = 8^k chia 7 dư 1 => 2^n + 1 chia 7 dư 2 
* nếu r = 1 => 2^n = 8^k.2 chia 7 dư 2 => 2^n + 1 chia 7 dư 3 
* nếu r = 2 => 2^n = 8^k.4 chia 7 dư 4 => 2^n + 1 chia 7 dư 5 
tóm lại 2^n không chia hết cho 7 với mọi n thuộc N 

cũng từ trên ta thấy 2^n -1 chia hết cho 7 khi r = 0, tức là n = 3k , k thuộc N, k > 2 
- - - - - 
20ⁿ-1 = (20-1)[20^(n-1) + 20^(n-1) +..+1] = 19.p chia hết cho 19 (1*) 
đặt n = 2k (do n chẳn) 
16ⁿ-13ⁿ = 16^(2k) - 3^(2k) = 256^k - 9^k = (256-9)[256^(k-1).9 + 256^(k-2).9^2+..] 
= 247.q = 19.13.q chia hết cho 19 (2*) 
từ (1*) và (2*) => A = 29ⁿ - 1 + 16ⁿ - 3ⁿ chia hết cho 19 

mặt khác: 16ⁿ-1 = 16^(2k) - 1 = 256^k - 1 = (256-1)[256^(k-1) + 256^(k-1) +..+1] = 255m = 17.15.m chia hết cho 17 (3*)
20ⁿ-3ⁿ = (20-3)[20^(n-1).3 + 20^(n-2).9 +..+3^(k-1)] = 17.p chia hết cho 17 (4*) 
từ (3*) và (4*) => A chia hết cho 17 

từ hai điều trên => A chia hết cho BCNN[19,17] = 323 

14 tháng 4 2016

đúng nhưng hơi dài

20 tháng 3 2016

Ta có 323=17.19

+Chứng minh A⋮17

Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16n-1)+ (20n-3n)

Nhận xét:⎨(16n−1)⋮17(20n−3n)⋮17

=>A⋮17(1)

+Chứng minh A⋮19

Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16n+3n)+ (20n-1)

Nhận xét ⎨(16n+3n)⋮19(20n−1)⋮19

⇒A⋮19(2)

Mà (17;19)=1

Từ (1) và (2)⇒A⋮(17.19)⇒A⋮(17.19)

hayA⋮323 (đpcm)

20 tháng 12 2017

a) Ta có \(S=2+2^2+2^3+...+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{97}.15\)

\(=\left(2+2^5+...+2^{97}\right).15\)

Vậy nên \(S⋮15\)

b) Ta thấy \(2+2^5+...+2^{97}=2\left(1+2^4+...+2^{96}\right)⋮2;15⋮5\)

Vậy nên \(S⋮10\) hay chữ số tận cùng của S là 0.

12 tháng 11 2015

dài quá bạn hỏi từng câu nhé

12 tháng 11 2015

bạn chia thành ngắn í,dài khong thích đọc

19 tháng 5 2017

Ta có: 323=17.19 và 20n+16n-3n-1

(20n-10)+(16n-3n) chia hết ho 19  (1)

( vì 20n-1 chia hết cho 20-1=19) và 16n-3n chia hết cho 19 vì n chẵn

Vậy 20n+16n-3n-1 = ( 20n-3n)+(16n-1) chia hết cho 17  (2)

Từ (1) và (2) và ƯCLN(17, 19)=1 suy ra :

(20n+16n-3n-1) chia hết cho 323

29 tháng 9 2018

Ta thấy :

 323=17.19 và (17;19)=1 nên ta cần chứng minh 

\(20^n-1+16^n-3^n⋮17\) và \(19\)

Ta có : 
\(20^n-1⋮\left(20-1\right)=19\) ;    \(16^n-3^n⋮\left(16+3\right)=19\)( vì n chẵn )                              (1)
Mặt khác :
\(20^n+16^n-3^n-1=20^n-3^n+16^n-1\) và  \(20^n-3^n⋮\left(20-3\right)=17\) ; \(16^n-1⋮\left(16+1\right)=17\)( 2 )
Từ ( 1 ) và (2 ) 
\(\Rightarrow20^n+16^n-3^n-1⋮323\)
 
 
 
22 tháng 3 2017

Giải:

Đặt \(A=20^n+16^n-3^n-1\)

Ta có: \(323=17.19\). Biến đổi:

\(A=20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(n\) là số tự nhiên chẵn

\(\Rightarrow\left\{{}\begin{matrix}20^n-1⋮20-1=19\\16^n-3^n⋮16+3=19\end{matrix}\right.\)\(\Leftrightarrow A⋮19\left(1\right)\)

Mặt khác:

\(A=20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(n\) là số tự nhiên chẵn

\(\Rightarrow\left\{{}\begin{matrix}20^n-3^n⋮20-3=17\\16^n-1⋮16+1=17\end{matrix}\right.\)\(\Leftrightarrow A⋮17\left(2\right)\)

\(\left(17;19\right)=1\) và từ \(\left(1\right)\)\(\left(2\right)\Rightarrow A⋮323\)

Vậy \(20^n+16^n-3^n-1⋮323\) (Đpcm)