K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

a, S = 1 + 5 + 52 +...+ 5100

= (1 + 5) + (52 + 53) +...+ (599 + 5100)

= (1 + 5) + 52(1 + 5) +...+ 599(1 + 5) 

= 6 + 52.6 +...+ 599.6

= 6(1 + 52 +...+ 599)

Vì 6 chia hết cho 3 nên 6(1 + 52 +...+ 599) chia hết cho 3

Vậy S chia hết cho 3

b, S = 1 + 5 + 52 +...+ 5100

5S = 5 + 52 + 53 +...+ 5101

5S - S = (5 + 52 + 53 +...+ 5101) - (1 + 5 + 52 +...+ 5100)

4S = 5101 - 1

4S + 1 = 5101 - 1 + 1

4S + 1 = 5101 = 5n + 1

=> n + 1 = 101

=> n = 100

15 tháng 7 2015

bài 1

chứng minh chia hết cho 3 nè

s=\(2+2^2+2^3+...+2^{100}\)

s=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

s=\(2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)

s=\(2.3+2^2.3+...+2^{99}.3\)

s=\(3.\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 => s chia hết cho 3(đpcm)

chứng minh chia hết cho 5

s=\(\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

s=\(2.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)

s=\(2.15+...+2^{97}.15\)

s=\(15.\left(2+...+2^{97}\right)\)chia hết cho 5=> s chia hết cho 5

mong là có thể giúp được bạn

 

 

4 tháng 1 2018

tui ko  bit

14 tháng 10 2018

a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)

\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)

\(=4\left(3+3^3+...+3^{99}\right)\)

\(\Rightarrow B⋮4\)

b, Vì 3 chia hết cho 3

3chia hết cho 3

.

.

.

3100 chia hết cho 3

\(\Rightarrow B⋮3\)

c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)

\(=12+3^2\cdot12+....+3^{97}\cdot12\)

\(=12\left(1+3^2+...+3^{97}\right)\)

\(\Rightarrow B⋮12\)

14 tháng 1 2016

1)

4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1\(\in\)Ư(3)={-1;1;-3;3}

=>2n\(\in\){0;2;-2;4}

=>n\(\in\){0;1;-1;2}

2)S= 3^1+3^3+3^5+...+3^2013+3^2015

S=(3^1+3^3+3^5)+(3^7+3^9+3^11)+...+(3^2011+3^2013+3^2015)

S=273+3^6(3+3^3+3^5)+...+3^2010(3+3^3+3^5)

S=273+3^6.273+...+3^2010.273

S=273(1+3^6+...+3^2010)

S=7.39(1+3^6+...+3^2010)

=>S chia hết cho 7

còn k chia hết cho 9 thì mk chịu

17 tháng 1 2016

Bổ sung cho bạn Mai Ngọc:

a) Ta có:

S=31+33+35+...+32013+32015

  =3+ 32(3+33+...+32011+32013)

  = 3+9(3+32+...+32011+32013)

Vì 9 chia hết cho 9 nên 9(3+33+...+32011+32013chia hết cho 9

Mà 3 không chia hết cho 9 nên 3+9(3+32+...+32011+32013) không chia hết cho 9

Hay S không chia hết cho 9

       Vậy không chia hết cho 9

 

 

 

19 tháng 11 2018

S=1+5+52+53+...+599+5100    Có 101 SH

=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}=(1+5)+(52+53)+...+(598+599)+5100

=6+5^2\left(1+5\right)+...+5^{98}\left(1+5\right)+5^{100}=6+52(1+5)+...+598(1+5)+5100

=6.\left(1+5^2+...+5^{98}\right).6+5^{100}=6.(1+52+...+598).6+5100

Vì 6 ⋮⋮3 và 1 + 52+ ..... + 598 ⋮⋮3

nên 6 .  (1 + 52+ ..... + 598) ⋮⋮3.

mà 5 \(⋮̸\)3 \Rightarrow⇒5100\(⋮̸\)3. \Rightarrow⇒=6.\left(1+5^2+...+5^{98}\right).6+5^{100}=6.(1+52+...+598).6+5100\(⋮̸\)3.

Vậy S \(⋮̸\)3

19 tháng 11 2018

\(S=1+5+5^2+5^3+...+5^{99}+5^{100}\)    Có 101 SH

   \(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)

    \(=6+5^2\left(1+5\right)+...+5^{98}\left(1+5\right)+5^{100}\)

     \(=6.\left(1+5^2+...+5^{98}\right).6+5^{100}\)

Vì 6 \(⋮\)3 và 1 + 52+ ..... + 598 \(⋮\)3

nên 6 .  (1 + 52+ ..... + 598\(⋮\)3.

mà 5 \(⋮̸\)\(\Rightarrow\)5100\(⋮̸\)3. \(\Rightarrow\)\(=6.\left(1+5^2+...+5^{98}\right).6+5^{100}\)\(⋮̸\)3.

Vậy S \(⋮̸\)3

21 tháng 2 2020

Câu 1 :

a) Ta có : S=5+52+53+...+52006

5S=52+53+54+...+52007

\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)

\(\Rightarrow\)4S=52007-5

\(\Rightarrow S=\frac{5^{2007}-5}{4}\)

b) Ta có : S=5+52+53+...+52006

=(5+53)+(52+54)+...+(52004+52006)

=5(1+52)+52(1+52)+...+52004(1+52)

=5.26+52.26+...+52004.26\(⋮\)26

Vậy S\(⋮\)26

21 tháng 2 2020

Câu 2 :

Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.

Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6

\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6

\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6

\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)

Ta có : 3=3

            4=22

            5=5

            6=2.3

\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60

\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}

\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}

Mà theo đề bài, a nhỏ nhất và chia hết cho 11

\(\Rightarrow\)a=418

Vậy số cần tìm là 418