K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

S=1+3+32+33+...+330

3S=3+32+33+34+...+331

3S-S=(3+32+33+34+...+331) - (1+3+32+33+...+330)

2S=331-1

S=(331-1):2

= (328.33 - 1):2

= [(34)7.27 - 1]:2

= [(...1)7.27 - 1]:2

= [(....1).27 - 1]:2

= [(...7) - 1]:2

= (...6) : 2

...3

Mà số chính phương thường có chữ số tận cùng là 0;1;4;5;6;9 nên S không phải là số chính phương

7 tháng 1 2017

MINH CHI BIET TIM CHU SO TAN CUNG SORRY NHA]

MINH KO BIET VIET SO MU

13 tháng 11 2015

a) S = 2.1 + 2.3 + 2.32 + ... + 2.32004

= 2.(1+3+32+...+32004)

= 2.\(\frac{3^{2005-1}}{2}\)

= 32005 - 1

b) Nhận thấy : 2005 = 4k + 1

Nên : 32005 = 34k + 1 = 34k.3 = ...1k . 3

Vì ...1k có tận cùng là 1 nên 32005 có tận cùng là 3 

=> 32005 - 1 có tận cùng là 2

13 tháng 11 2015

a) Ta có :

\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2004}\)

=> \(S=2.\left(1+3+3^2+...+3^{2004}\right)\)

Đăt \(1+3+3^2+...+3^{2004}\)là A, ta có :

\(3A=3+3^2+3^3+...+3^{2005}\)

=> \(3A-A=3^{2005}-1\)

=> \(A=\frac{3^{2005}-1}{2}\)

Vậy \(A=\frac{3^{2005}-1}{2}\)

=> 2.A = 2 . \(\frac{3^{2005}-1}{2}\)=\(3^{2005}-1\)

b) Ta có : 32005 = (34)501 . 3 

= 81501 . 3 = ...1 . 3 = ...3

32005 - 1 = ....3 - 1 = ....2

Vì chữ số tận cùng của S là 2 nên S ko phải là số chính phương.

 

30 tháng 4 2016

a/ Ta co: 3S=\(3^2+3^3+3^4+...+3^{62}\)

           3S-S=\(3^{62}-3\)=2S mà \(3^{62}=3.3.3...3\)(62 thừa số 3)

Vì:62:4 dư 2 nên \(3^{62}\) có tận cùng là 9 nên \(3^{62}-3\)tận cùng là 6

2S tận cùng là 6 nên S tận cùng là 3;8

Vì số chính phương chỉ có tận cùng là 0;1;4;9;6;5 nên S không là số chính phương.

b/Vì 2S=\(3^{62}-3\)nên 2S+3=\(3^{62}-3+3\)=\(3^{62}\)=\(3^{31+31}=3^{31}.3^{31}\)là số chính phương

26 tháng 7 2017

\(S=1+3^1+3^2+3^3+...+3^{30}\)

\(3S=3+3^2+3^3+...+3^{31}\)

\(3S-S=3^{31}-1\)

\(2S=3^{4.7+3}-1\)

\(2S=81^7.27-1\)

\(2S=\overline{......1}.27-1\)

\(2S=\overline{......7}-1=\overline{......6}\)

\(S=\overline{........3}\)

Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương

31 tháng 10 2019

\(a,\\ Có.3A=3\left(1+3+3^2+...+3^{30}\right)=3+3^2+3^3+...+3^{31}\\ Mà.A=1+3+3^2+3^3+...+3^{30}\\ \Rightarrow2A=3^{31}-1\\ 2A\equiv3^{31}-1\left(Mod.10\right)\\ \equiv3^{4\cdot7+3}-1\\ \equiv1+27-1\equiv7\)

Phần gì không hiểu thì hỏi nhé

31 tháng 10 2019

mod10 là j