Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(x+2)(x-2)-(x-3)(x+1)
= x^2 - 2^2 - ( x^2 + x - 3x - 3 )
= x^2 - 4 - x^2 - x + 3x +3
= 2x -1
duyệt đi olm
A=(5m2-8m2-9m2)(-n3+4n3)
=>A =(-12).m2.3.n3=>A=(-36).m2.n3
+De A=0 thi m=0 hoac n=0
+De A>0 =>m,n khac 0 va n<0
Vay voi A= 0 th m=0 hoac n=0 con voi A>0 thi m,n khac 0 va n<0
a,4n-5 chia hết cho n-7
=>4n-28+33 chia hết cho n-7
=>4(n-7)+33 chia hết cho n-7
=>33 chia hết cho n-7<=>n-7 \(\in\)Ư(33)
=>n-7 \(\in\) {-33;-11;-3;-1;1;3;11;33}
=>n-7 \(\in\) {-26;-4;4;6;8;10;18;40}
những câu sau làm tương tự
**** mik nha
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
S=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396(1-3+32-33)
=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20
b) 3S=3-32+33-34+..+399-3100
3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)
4S=1-3100
S=(1-3100):4
Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1
Ta có 33021 = 32019. 32 = 32019 . 9 chia hết cho 9
35 = 33 . 32 = 33 . 9 chia hết cho 9
=> 32021 + 35 chia hết cho 9
Ta có:
32021+35
=32.32019+32.33=9(32019+33)
Vì 9 chia hết cho 9
Nên 9(32019+33) chia hết cho 9
Vậy 32021+35 chia hết cho 9
a) \(B=1+3+3^2+3^3+....+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+2^3\right)+....+3^{96}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{96}\right)\)
\(=40\left(1+3^4+....+3^{96}\right)\)\(⋮\)\(40\)
b) \(3^4+3^5+3^6+3^7=3^4\left(1+3+3^2+3^3\right)=40.3^4\)
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
S = 1-3+32+...+398-399 =- 2+32 (1-3) + ... +398 (1-3) =-2-2.32-2.34 - ... -2.398 = -2(1+32+34+...+398) => 32S =9S =-2( 32 + 34 +36 +...3100) => 9S - S = -2 (32 + 34 +36+...+3100 )+2(1+32+34+...+398 ) =>8S=-2(3100 -1) =>S= -2(3100 -1) / -8 = 3100 -1/-4