K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

ĐK:`x_1,x_2 ne 0=>x_1.x_2 ne 0`

`=>-2m-1 ne 0=>m ne -1/2`

Ta có:`a=1,b=2m,c=-2m-1`

`=>a+b+c=1+2m-2m-1=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-2m-1\end{array} \right.\) 

PT có 2 nghiệm pn

`=>-2m-1 ne 1`

`=>-2m ne 2`

`=>m ne -1`

Nếu `x_1=1,x_2=-2m-1`

`pt<=>6=1+1/(-2m-1)`

`<=>5=1/(-2m-1)`

`<=>2m+1=-1/5`

`<=>2m=-6/5`

`<=>m=-3/5(tm)`

Nếu `x_2=1,x_1=-2m-1`

`pt<=>6/(-2m-1)=-2m-1+1=-2m`

`<=>6/(2m+1)=2m`

`<=>3/(2m+1)=m`

`<=>2m^2+m-3=0`

`a+b+c=0`

`=>m_1=1(tm),m_2=-c/a=-3/2(tm)`

Vậy `m in {-3/5,1,-3/2}` thì ....

\(x^2+6x+2m-3=0\)

\(\Delta=6^2-4\cdot1\cdot\left(2m-3\right)\)

\(=36-8m+12=-8m+48\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-8m+48>0

=>-8m>-48

=>m<6

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-6\\x_1x_2=\dfrac{c}{a}=2m-3\end{matrix}\right.\)

\(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2+x_1+x_2\)

=>\(\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=x_1+x_2+2\)

=>\(\dfrac{-6-2}{x_1x_2-\left(x_1+x_2\right)+1}=-6+2=-4\)

=>\(x_1x_2-\left(x_1+x_2\right)+1=\dfrac{-8}{-4}=2\)

=>2m-3-(-6)=2

=>2m-3+6=2

=>2m+3=2

=>2m=-1

=>\(m=-\dfrac{1}{2}\left(nhận\right)\)

4 tháng 2 2024

làm sai anh ạ

13 tháng 5 2019

Bạn tham khảo tại đây nhé:

Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath

a, thay m = 3 vào pt ta đc

x2  - ( 2 . 3 +1)x + 2.3 = 0

x2  - 7x + 6 =0

ta có a + b+c= 1 -7 + 6=0

\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1 

                                       x2 = 6

b, x2 - (2m +1 )x + 2m=0

 \(\Delta\)= [ - (2m + 1 )]2  - 4.2m

        = 4m2 + 4m + 1 - 8m 

          = 4m2 - 4m + 1 

         = (2m-1)2 \(\ge\)\(\forall\)m

để pt có 2 nghiệm pb thì   2m - 1 \(\ne\)

                                          m \(\ne\)1/2

theo hệ thức vi ét ta có

x1 + x2 = 2m + 1

x1 x2 = 2m

ta có | x1| - |x2| = 2

       ( |x1| - |x2| )2 = 4

       x12  - 2 |x1x2| + x22   =4

        x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4

  ( x1 + x2)2  - 2 |x1x2| = 4

(2m + 1 )2 - 2|2m|=4   (1 )

+, nếu 2m \(\ge\)\(\Rightarrow\)\(\ge\)0 thì

(1)\(\Leftrightarrow\)(2m + 1)2  - 4m = 4

                   4m2 + 4m + 1 - 4m = 4

                     4m2 = 3

                        m2 = 3/4

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)

+, 2m < 0 suy ra m < 0 thì 

(1) : (2m + 1 )2  + 4m =4

          4m2 + 4m + 1 + 4m = 4

           4m2 + 8m - 3 =0

       \(\Delta\)= 64 + 4.4.3 = 112 > 0

pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)\(\frac{-2+\sqrt{7}}{2}\)(ko tm)

                                x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)

vậy m \(\in\){\(\frac{\sqrt{3}}{2}\)\(\frac{-2-\sqrt{7}}{2}\)} thì ...........

ko bt có đúng ko nữa 

#mã mã#

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
22 tháng 1 2024

a) Với m = 2, phương trình đã cho trở thành:

2x² - 6x + 2.2 - 5 = 0

⇔ 2x² - 6x - 1 = 0

∆' = (-3)² - 2.(-1) = 11 > 0

⇒ Phương trình có 2 nghiệm phân biệt:

x₁ = [-(-3) + 11]/2 = (3 + 11)/2

x₂ = [-(-3) - 11]/2 = (3 - 11)/2

b) ∆' = (-3)² - 2.(2m - 5)

= 9 - 4m + 10

= 19 - 4m

Để phương trình đã cho có nghiệm thì ∆' ≥ 0

⇔ 19 - 4m ≥ 0

⇔ 4m ≤ 19

⇔ m ≤ 19/4

Theo định lý Viét, ta có:

x₁ + x₂ = 3

x₁x₂ = (2m - 5)/2

Ta có:

1/x₁ + 1/x₂ = 6

⇔ (x₁ + x₂)/(x₁x₂) = 6

⇔ 3/[(2m - 5)/2] = 6

⇔ (2m - 5)/2 = 1/2

⇔ 2m - 5 = 1

⇔ 2m = 6

⇔ m = 3 (nhận)

Vậy m = 3 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

x2 - 2mx + m2 -2 = 0

\(\Delta\)= 4m2 - 4 (m2 -2)

         = 4m2 - 4m2 + 8 

        = 8 >0

\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{2m+\sqrt{8}}{2}\)= m +\(\sqrt{2}\)

                                     x2 = m - \(\sqrt{2}\)

ta có \(|\)x13 - x23 \(|\)= 10\(\sqrt{2}\)

           \(|\)(m +\(\sqrt{2}\))3  - (m - \(\sqrt{2}\))3 |= 10 \(\sqrt{2}\)

giải nốt pt này là ra đấy nha

#mã mã#

8 tháng 5 2019

Đầu tiên cần tìm điều kiện của m để phương trình có 2 nghiệm nha bn 

khi đó 

\(x_1+x_2=2m\)

\(x_1.x_2=m^2-2\)

Ta có |\(x_1^3-x_2^3\)|=10\(\sqrt{2}\)

|(x1-x2)(x12-x1.x2+x22)|=10\(\sqrt{2}\)

(x1-x2)2. ((x1+x2)2-x1.x2)2=200 ( bước này là bình phương 2 vế nha bn ) 

(x12+x22-2x1x2) (4m2-m2+2)=200

((x1+x2)2-4x1x2)(3m2+2)=200

(4m2-4m2+8)(3m2+2)=200

3m=23 

=> m=\(\sqrt{\frac{23}{3}}\)hoặc m=\(-\sqrt{\frac{23}{3}}\)

rồi bn đối chiếu điều kiện của m ở trên để phương trình có 2 no phân biệt nha 

( bài mk lm dài có thế có sai sót ...mong bn thông cảm)

NV
21 tháng 8 2021

\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)

(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))

Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)

\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\) 

\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)

Thế vào \(x_1x_2=2m\)

\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)

\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)

\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))