K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

a) \(\frac{\left(x+m\right)}{x-5}+\frac{\left(x+5\right)}{x-m}=2\)

<=> \(\frac{\left(x+m\right)\left(x-m\right)}{\left(x-5\right)\left(x-m\right)}+\frac{\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)

<=>\(\frac{\left(x+m\right)\left(x-m\right)+\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)

<=>\(\frac{x^2-m^2+x^2-5^2}{\left(x-m\right)\left(x-5\right)}=2\)

<=>2(x-m)(x-5)=2x2-m2-25

Thay m=2, ta có:

2(x-2)(x-5)=2x2-22-25

2x2-14x+20=2x2-29

20+29=2x2-2x2+14x

49=14x

=>x=3,5

Các câu sau cũng tương tự, dài quá không hi

24 tháng 1 2017

d)

\(x\ne a,x\ne b\)

đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)

\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)

Vậy: \(a\ne b\) Pt vô nghiệm

a=b phương trinhg nghiệm với mọi x khác a, b

25 tháng 1 2017

cảm ơn bạn nha

8 tháng 2 2018

bài dễ mà :)

Pt ẩn x : \(\left(m^2-1\right)x=m+1\)   ( 1 )

\(\Leftrightarrow\)\(\left(m+1\right)\left(m-1\right)x=m+1\)

- Nếu \(m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

Pt ( 1 ) có nghiệm : \(x=\frac{m+1}{\left(m+1\right)\left(m-1\right)}=\frac{1}{m-1}\)

Nếu \(m+1=0\Leftrightarrow m=-1\)

Pt ( 1 ) có dạng 0x = 0 pt vô số nghiệm

Nếu \(m-1=0\Leftrightarrow m=1\)

Pt ( 1 ) có dạng 0x = 2 pt vô nghiệm

Vậy * \(m\ne\pm1\)pt ( 1 ) có nghiệm duy nhất \(x=\frac{1}{m-1}\)

       * \(m=-1\)pt ( 1 ) vô số nghiệm

      * \(m=1\)pt ( 1 ) vô nghiệm 

1 tháng 5 2018

\(\left(m^2-1\right)x=m+1\)              \(\left(1\right)\)

+) Nếu  \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)

Phương trình có nghiệm duy nhất  \(x=\frac{m+1}{m^2-1}=\frac{1}{m-1}\)

+) Nếu  \(m=1\)

\(\left(1\right)\Leftrightarrow0x=2\) ( vô lí )

+) Nếu  \(m=-1\)

\(\left(1\right)\Leftrightarrow0x=0\) ( luôn đúng )

Vậy với  \(m\ne\pm1\) phương trình có 1 nghiệm duy nhất  \(x=\frac{1}{m-1}\)

       với m =1 thì phương trình vô nghiệm

       với m = -1 thì phương trình có nghiệm đúng với mọi x

10 tháng 5 2016

a. \(\frac{mx+5}{10}\)\(\frac{x+m}{4}\)=\(\frac{m}{20}\)

\(\frac{2mx+10}{20}\)\(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)

2mx +10 + 5x +5m =m

x(2m+5)= -4m -10(1)

* 2m+5= 0 => m=-5/2

(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm

* 2m+5 \(\ne\)0=> m\(\ne\)-5/2

pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2

vậy với m=-5/2 phương trình đã cho vô số nghiệm

m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2

 

10 tháng 5 2016

b.(m+2)x+ 4(2m+1)= \(m^2\)+4(m-1)

(m+2)x= \(m^2\)+ 4m-4-8m -4

(m+2)x=\(m^2\)-4m-8(1)

* với m+2=0 => m=-2

pt(1)<=> 0x=4

vậy phương trinh đã cho vô nghiệm

* với m+2\(\ne\)0=> m\(\ne\)-2

phương trình đã cho có nghiệm duy nhất là x=( \(m^2\)-4m-8):(m-2)

30 tháng 1 2018

1, Ta có : \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)

\(\Leftrightarrow x^2-x+2x-2=x^2-xm+x-m\)

\(\Leftrightarrow x^2-x^2+x-x-2+xm+m=0\)

\(\Leftrightarrow x\left(m+1\right)-2=0\)

Nếu \(m+1\ne0\Rightarrow\)PT có nghiệm duy nhất là : x = \(\dfrac{2}{m+1}\)

Vậy nếu m # -1 thì Pt có nghiệm duy nhất

3 ,

\(\dfrac{x+m}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x^2+mx}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=2\)

\(\Leftrightarrow\dfrac{x^2+mx+x^2+x-2x-2}{x\left(x+1\right)}=2\)

Mik chỉ làm đến đây được thôi

P/S : Đăng từng bài 1 thôi :))

19 tháng 2 2018

Câu 1: \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\)

ĐKXĐ: \(x\ne m;x\ne1\)

\(\text{Ta có : }\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\\ \Rightarrow\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-m\right)\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x-m\right)}{\left(x-1\right)\left(\left(x-m\right)\right)}\\ \Rightarrow x^2+2x-x-2=x^2-mx+x-m\\ \Leftrightarrow x^2+x-2-x^2+mx-x+m=0\\ \Leftrightarrow m\left(x+1\right)=2\)

+) Với \(m\ne0\Leftrightarrow x+1=\dfrac{2}{m}\)

\(\Leftrightarrow x=\dfrac{2-m}{m}\)

\(\text{Khi đó : }\left\{{}\begin{matrix}\dfrac{2-m}{m}\ne1\\\dfrac{2-m}{m}\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m}{m}-1\ne0\\\dfrac{2-m}{m}-m\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m-m}{m}\ne0\\\dfrac{2-m-m^2}{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2-2m\ne0\\2-2m+m-m^2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(1-m\right)\ne0\\2\left(1-m\right)+m\left(1-m\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\\left(2+m\right)\left(1-m\right)\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\2+m\ne0\\1-m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)

Với \(m=0\Leftrightarrow0x=2\left(\text{Vô nghiệm}\right)\)

\(\Leftrightarrow S=\varnothing\)

Vậy để phương trình có 1 nghiệm duy nhất thì \(m\ne0;m\ne1;m\ne-2\)

17 tháng 3 2020

a) 7(m-11)x-2x+14=5m

<=> 7xm -77x-2x+14=5m

<=> 7xm-79x=5m-14

<=> (7m-79)x=5m-14

* Biện luận pt:

+) Nếu 7m-79=0 <=> m=\(\frac{79}{7}\)<=> 0x=\(\frac{297}{7}\) ( vô lý)

+) Nếu 7m-79\(\ne0\)<=> x=\(\frac{5m-14}{7m-79}\)

Vậy :

Nếu m=\(\frac{79}{7}\) thì pt vô nghiệm.

Nếu m\(\ne\) \(\frac{79}{7}\) thì S = \(\left\{\frac{5m-14}{7m-79}\right\}\)

b) 2xm + 4(2m+1)= m2+ 4 (x-1)

<=> 2xm + 8m + 4= m2+4x-4

<=> 2xm+8m+4-m2-4x+4=0

<=> (2m-4)x -m2+8m+8=0

<=> (2m-4)x=m2-8m-8

*Biện luận:

+) Nếu 2m-4=0 <=> m=2 <=> 0x=-20 (vô lý ) => pt vô nghiệm.

+) Nếu 2m-4 \(\ne0\) <=> x=\(\frac{m^2-8m-8}{2m-4}\)

Vậy :

Nếu m=2 => pt vô nghiệm

Nếu m\(\ne2=>S=\left\{\frac{m^2-8m-8}{2m-4}\right\}\)