K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2019

\(x^2+\left(m-1\right)x-6=0\)

Do \(a.c=-6< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Khi đó \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-6\Rightarrow x_1x_2+6=0\end{matrix}\right.\)

\(A=\left(x^2_1-9\right)\left(x_2^2-4\right)=\left(x_1-3\right)\left(x_2-2\right)\left(x_1+3\right)\left(x_2+2\right)\)

\(=\left(x_1x_2+6-2x_1-3x_2\right)\left(x_1x_2+6+2x_1+3x_2\right)\)

\(=-\left(2x_1+3x_2\right)\left(2x_1+3x_2\right)=-\left(2x_1+3x_2\right)^2\le0\)

\(\Rightarrow A_{max}=0\) khi \(2x_1+3x_2=0\)

Kết hợp với hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1x_2=-6\\2x_1+3x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{-3x_2^2}{2}=-6\\x_1=\dfrac{-3x_2}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2\\x_1=-3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_2=-2\\x_1=3\end{matrix}\right.\)

\(\Rightarrow m=1-\left(x_1+x_2\right)\Rightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

2 tháng 3 2019

m=2,m=0

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

18 tháng 7 2018

a)Để \(PT\) có 2 nghiệm phân biệt khi \(\Delta'=\left(m-1\right)^2-\left(3-m\right)\)

\(=m^2-2m+1-3+m=m^2-m-2=\left(m-2\right)\left(m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -1\\m>2\end{cases}}\)

Do đó để \(PT\)có 2 nghiệm phân biệt trái dấu khi \(\hept{\begin{cases}m\notin\left[-1;2\right]\\3-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\notin\left[-1;2\right]\left(1\right)\\m>3\left(TM\left(1\right)\right)\end{cases}}\)

Vậy \(m>3\) thì \(PT\) có 2 nghiệm trái dấu

b) Theo \(vi-et\: \) ta có :

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-2\right)^2-2.\left(3-m\right)=4m^2-6m-2\)

Kết hợp với đề bài ta được : \(4m^2-6m-2\ge10\Leftrightarrow4m^2-6m-12\ge0\Leftrightarrow2m^2-3m-4\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le\frac{3-\sqrt{41}}{4}\\\frac{3+\sqrt{41}}{4}\le x\end{cases}}\)

a, \(x^2-2\left(m-1\right)x-3-m=0\left(a=1;b=-2m+2;c=-3-m\right)\)

Để phương trình có 2 nghiệm trái dấu thì \(ac< 0\)hay 

\(-3-m< 0\Leftrightarrow m< -3\)

b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=-3-m\)(tđz) 

Theo bài ra ta có : \(x_1^2+x_2^2\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

Thay tđz bên trên vào ta đc : \(\left(2m-2\right)^2-2\left(-3-m\right)\ge10\)

\(\Leftrightarrow4m^2-4+6+2m\ge10\)

\(\Leftrightarrow4m^2+2+2m\ge10\Leftrightarrow3m^2-8+2m\ge0\)

Áp dụng HĐT đáng quên ra luôn =(( 

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath