Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\Delta'=m^2+1>0\forall m\) nên phương trình luôn có hai nghiệm phân biệt với mọi m
b) Theo Viet ta có:
\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)
Vậy nên \(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2=4m^2+3\)
Để \(x_1^2+x_2^2-x_1x_2=7\Rightarrow4m^2+3=7\Rightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
b theo viet co
x1+x2=2m
x1*x2=-1
x1^2+x2^2-x1*x2=7
(x1+x2)^2 -2x1*x2-x1-x2=7
4m^2+2+1=7
4m^2=4 m=+-1
b/ x22 + x2 = x12 + x1
Chuyển thành --> x12 + x1 - x2 -x22 = 0
x12 -x22 ( Hằng đẳng thức) = (x1-x2)(x1+x2)
x1-x2=0
Có được (x1-x2)(x1+x2) -(x1+x2)=0
Thay vi - et vào ta có ( x1-x2) ( 2m) - ( 2m) =0
x1-x2=0
( x1-x2)2 =02
(x1+x2)2 -4x1.x2 =0
---> Thay vi-et vào được 4m2 -16=0 --> m= +2 và -2 ( xem điều kiện câu a để nhận hay loại)
a) Vì \(x=-2\)là một nghiệm của phương trình
\(\Rightarrow\)Thay \(x=-2\)vào pt(1) ta được:
\(\left(-2\right)^2-2.m.\left(-2\right)+4=0\)\(\Leftrightarrow4+4m+4=0\)
\(\Leftrightarrow4m+8=0\)\(\Leftrightarrow4m=-8\)\(\Leftrightarrow m=-2\)
Vậy \(m=-2\)
\(a)\) Khi m=1 pt \(\Leftrightarrow\)\(x^2-2x=0\)\(\Leftrightarrow\)\(x\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\) khi m=1
\(b)\)\(\Delta'=\left(-m\right)^2-\left(2m-2\right)=m^2-2m+2=\left(m-1\right)^2+1>0\)
Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m
Ta có : \(x_1^2+x_2^2=12\)\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-2x_1x_2=12\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-2\end{cases}}\)
(*) \(\Leftrightarrow\)\(\left(2m\right)^2-2\left(2m-2\right)=12\)
\(\Leftrightarrow\)\(4m^2-4m-8=0\)
\(\Leftrightarrow\)\(m^2-m-2=0\) (2)
Có \(\Delta=\left(-1\right)^2-4.\left(-2\right)=9>0\)
pt (2) có hai nghiệm phân biệt \(\hept{\begin{cases}m_1=\frac{-\left(-1\right)+\sqrt{9}}{2}\\m_2=\frac{-\left(-1\right)-\sqrt{9}}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}m_1=2\\m_2=-1\end{cases}}}\)
Vậy để \(x_1^2+x_2^2=12\) thì \(\orbr{\begin{cases}m=-1\\m=2\end{cases}}\)
\(c)\) Ta có : \(A=\frac{6\left(x_1+x_2\right)}{x_1^2+x_2^2+4\left(x_1+x_2\right)}=\frac{6\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2+4\left(x_1+x_2\right)-2x_1x_2}=\frac{6.2m}{\left(2m\right)^2+4.2m-2\left(2m-2\right)}\)
\(A=\frac{12m}{4m^2+4m+4}=\frac{3m}{m^2+m+1}\)\(\Leftrightarrow\)\(Am^2+\left(A-3\right)m+A=0\)
+) Nếu \(A=0\) thì \(m=0\)
+) Nếu \(A\ne0\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)
\(\Leftrightarrow\)\(\left(A-3\right)^2-4A.A\ge0\)
\(\Leftrightarrow\)\(-3A^2-6A+9\ge0\)
\(\Leftrightarrow\)\(A^2+2A-3\le0\)
\(\Leftrightarrow\)\(\left(A+1\right)^2\le4\)
\(\Leftrightarrow\)\(-3\le A\le1\)
\(\Rightarrow\)\(A\le1\) dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{3m}{m^2+m+1}=1\)\(\Leftrightarrow\)\(m=1\)
Vậy GTLN của \(A=1\) khi \(m=1\)
\(x^2-2mx+2m-3=0\)
\(\Delta^,_x=m^2-2m+3\)
\(=\left(m-1\right)^2+2\ge2>0;\forall m\)
\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)
Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)
\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)
\(\Leftrightarrow-8m+4=-4\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
Ta có : \(x^2-2\left(m-1\right)x+2m-5=0\left(a=1;b=-2m+2;c=2m-5\right)\)
a, Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(\left(-2m+2\right)^2-4\left(2m-5\right)=4m^2+4-8m+20=4m^2-8m+24>0\)
b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=2m-5\)
Theo bài ra ta có : mk để \(x_1;x_2\)lần lượt là \(a;b\)nhé
\(\left(a^2-2ma-b+2m-3\right)\left(b^2-2mb-a+2m-3\right)=19\)
Do a;b là nghiệm nên a;b thỏa mãn pt đã cho nghĩa : \(\hept{\begin{cases}a^2-2\left(m-1\right)a+2m-5=0\\a^2-2\left(m-1\right)b+2m-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2a+2\\-2b+2\end{cases}}\)Thay vào pt trên ta đc : \(\left(-2a+2\right)\left(-2b+2\right)=19\)
\(\Leftrightarrow4ab+2a^2-4a+2b^2+ab-2b-4b-2a+4=19\)
\(\Leftrightarrow2\left(a+b\right)^2-6\left(a+b\right)+ab=15\) Thay vào ta lại có pt mới :
\(2\left(2m-2\right)^2-6\left(2m-2\right)+2m-5=15\)
\(\Leftrightarrow2\left(4m-4\right)-12m+12+2m-5-15=0\)
\(\Leftrightarrow8m-8-12m+2m+12-5-15=0\)
\(\Leftrightarrow-2m-16=0\Leftrightarrow-2m=16\Leftrightarrow m=-8\)
Bài 1:
a: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Theo đề, ta có: \(\left(2m\right)^2=2m-1+7=2m+6\)
\(\Leftrightarrow4m^2-2m-6=0\)
\(\Leftrightarrow4m^2-6m+4m-6=0\)
=>(4m-6)(m+1)=0
=>m=-1 hoặc m=3/2
\(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\)
\(\Leftrightarrow2-\left(x_1+x_2\right)-x_1x_2+2\left(x_1+x_2\right)=\left(x_1+x_2\right)^2\)
bạn thay vào là được, còn câu a dễ rồi
Đăng
Đăng muộn nhưng mình nghĩ sẽ giúp được mấy bạn sau này😊😊❤️