Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\)
Với \(\Delta'>0\forall m\)thì phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :
x1 + x2 = \(-\frac{-m}{1}=m\) ; x1x2 =\(\frac{2m-3}{1}=2m-3\)
Thay x1 + x2 = m; x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :
A = x12 + x22 + 2x1x2 - 2x1x2
A = ( x1 + x2 + 2x1x2 ) - 2x1x2
A = ( x1 + x2 )2 - 2x1x2
A = m2 - 2.( 2m - 3 )
A = m2 - 4m + 6
\(\Delta'=\left(-2\right)^2-1.6=-2< 0\)
Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất
\(\Delta=4m^2-4\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\)
Do đó pt luôn có nghiệm
Theo Vi-ét :
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-1\end{matrix}\right.\)
Ta có : \(A=x_1^2x_2+x_1x_2^2\)
\(A=x_1x_2\left(x_1+x_2\right)\)
\(A=\left(2m-1\right)\cdot\left(-2m\right)\)
\(A=-4m^2+2m\)
\(A=-4\left(m^2-\frac{1}{2}m\right)\)
\(A=-4\left(m^2-2\cdot m\cdot\frac{1}{4}+\frac{1}{16}-\frac{1}{16}\right)\)
\(A=\frac{1}{4}-4\left(m-\frac{1}{4}\right)^2\le\frac{1}{4}\forall m\)
Dấu "=" xảy ra \(\Leftrightarrow m=\frac{1}{4}\)
\(a)\) Khi m=1 pt \(\Leftrightarrow\)\(x^2-2x=0\)\(\Leftrightarrow\)\(x\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\) khi m=1
\(b)\)\(\Delta'=\left(-m\right)^2-\left(2m-2\right)=m^2-2m+2=\left(m-1\right)^2+1>0\)
Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m
Ta có : \(x_1^2+x_2^2=12\)\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-2x_1x_2=12\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-2\end{cases}}\)
(*) \(\Leftrightarrow\)\(\left(2m\right)^2-2\left(2m-2\right)=12\)
\(\Leftrightarrow\)\(4m^2-4m-8=0\)
\(\Leftrightarrow\)\(m^2-m-2=0\) (2)
Có \(\Delta=\left(-1\right)^2-4.\left(-2\right)=9>0\)
pt (2) có hai nghiệm phân biệt \(\hept{\begin{cases}m_1=\frac{-\left(-1\right)+\sqrt{9}}{2}\\m_2=\frac{-\left(-1\right)-\sqrt{9}}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}m_1=2\\m_2=-1\end{cases}}}\)
Vậy để \(x_1^2+x_2^2=12\) thì \(\orbr{\begin{cases}m=-1\\m=2\end{cases}}\)
\(c)\) Ta có : \(A=\frac{6\left(x_1+x_2\right)}{x_1^2+x_2^2+4\left(x_1+x_2\right)}=\frac{6\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2+4\left(x_1+x_2\right)-2x_1x_2}=\frac{6.2m}{\left(2m\right)^2+4.2m-2\left(2m-2\right)}\)
\(A=\frac{12m}{4m^2+4m+4}=\frac{3m}{m^2+m+1}\)\(\Leftrightarrow\)\(Am^2+\left(A-3\right)m+A=0\)
+) Nếu \(A=0\) thì \(m=0\)
+) Nếu \(A\ne0\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)
\(\Leftrightarrow\)\(\left(A-3\right)^2-4A.A\ge0\)
\(\Leftrightarrow\)\(-3A^2-6A+9\ge0\)
\(\Leftrightarrow\)\(A^2+2A-3\le0\)
\(\Leftrightarrow\)\(\left(A+1\right)^2\le4\)
\(\Leftrightarrow\)\(-3\le A\le1\)
\(\Rightarrow\)\(A\le1\) dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{3m}{m^2+m+1}=1\)\(\Leftrightarrow\)\(m=1\)
Vậy GTLN của \(A=1\) khi \(m=1\)
Lời giải:
Ta thấy:
\(\Delta'=(-m)^2-(2m-3)=(m-1)^2+2>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm pb với mọi $m$
Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=2m-3\end{matrix}\right.\)
Khi đó: \(A=x_1^2(1-x_2^2)+x_2^2(1-x_1^2)\)
\(=(x_1^2+x_2^2)-2(x_1x_2)^2\)
\(=(x_1+x_2)^2-2x_1x_2-2(x_1x_2)^2\)
\(=4m^2-2(2m-3)-2(2m-3)^2\)
\(=-4m^2+20m-12=-(2m-5)^2+13\)
Vì \((2m-5)^2\geq 0\Rightarrow A\leq 0+13=13\)
Vậy $A$ đạt max bằng $13$ khi \((2m-5)^2=0\Leftrightarrow m=\frac{5}{2}\)
b/ x22 + x2 = x12 + x1
Chuyển thành --> x12 + x1 - x2 -x22 = 0
x12 -x22 ( Hằng đẳng thức) = (x1-x2)(x1+x2)
x1-x2=0
Có được (x1-x2)(x1+x2) -(x1+x2)=0
Thay vi - et vào ta có ( x1-x2) ( 2m) - ( 2m) =0
x1-x2=0
( x1-x2)2 =02
(x1+x2)2 -4x1.x2 =0
---> Thay vi-et vào được 4m2 -16=0 --> m= +2 và -2 ( xem điều kiện câu a để nhận hay loại)
a) Vì \(x=-2\)là một nghiệm của phương trình
\(\Rightarrow\)Thay \(x=-2\)vào pt(1) ta được:
\(\left(-2\right)^2-2.m.\left(-2\right)+4=0\)\(\Leftrightarrow4+4m+4=0\)
\(\Leftrightarrow4m+8=0\)\(\Leftrightarrow4m=-8\)\(\Leftrightarrow m=-2\)
Vậy \(m=-2\)
hệ thức vi ét và biệt thức denta để làm gì hả bạn ?
do` bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm ,