K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=-3 vào pt, ta được:

9+6m+2m+1=0

=>8m+10=0

hay m=-5/4

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)

\(=4m^2-8m-4\)

\(=4\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì (m-2)(m+1)>=0

=>m>=2 hoặc m<=-1

c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)

\(\Leftrightarrow\left(2m\right)^2=16\)

=>2m=4 hoặc 2m=-4

=>m=2(nhận) hoặc m=-2(nhận)

13 tháng 5 2019

\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)

a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)

b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)

\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)

Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.

13 tháng 5 2019

d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)

\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)

\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)

c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)

Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)

Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)

\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)

\(\Leftrightarrow13m^2+39m^2+23=0\)

...

2 tháng 5 2016

kh biết

17 tháng 4 2020

a) thay m=-1 vào x2(2m-1)x-m=0 ta có:

x2+(-3)x+1=0\(\Delta\)=5

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{cases}}\)

b) A=\(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)

Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=-m\end{cases}}\)

=> \(A=\left(1-2m\right)^2-3\left(-m\right)=4m^2-4m+1+3m=4m^2-m+1\)

17 tháng 5 2019

Em yêu ơi ! Ở đây có ít người lớp 9 lắm , em lên hh sẽ có giáo viên giảng cho 

17 tháng 5 2019

lên Học24h 

4 tháng 5 2018

a. 

Xét phương trình: \(x^2+4mx-2m^2=0\) có : \(\Delta^'=(b^')^2-ac=(2m)^2+2m^2=6m^2\ge0\forall m\)=> pt luôn có nghiệm với mọi giá trị của m

b. Để pt có 2 nghiệm x1,x2 thì \(\Delta^'>0\Leftrightarrow m\ne0\)(*)

pt có 2 nghiệm x1,x2 thỏa mãn x1 +x2 = 2x1x2 thì m phải là nghiệm của hệ pt sau:

x1+ x2 = -4m (1)

x1.x2 = -\(2m^2\) (2)

x1+x2=2x1x2 (3)

Thế (1) và (2) vào pt(3) ta được:  -4m = -4m2

<=> m = 0 hoặc m= 1 

Kết hợp với đk (*) => m=1