\(^2\)-2x+m-1=0

a)giải pt khi m =-3.

b) với giá trị nào của m thì p...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

a. Thay m=-3 ta có: \(x^2-2x-3-1=0\Leftrightarrow x^2-2x-4=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)

b. Ta có, để phương trình có nghiệm kép thì: \(\Delta=0\Leftrightarrow2^2-4.1.\left(m-1\right)=0\Leftrightarrow m=2\)

c. Để phương trình có 2 nghiệm phân biệt thì:\(\Delta>0\Leftrightarrow2^2-4.1.\left(m-1\right)>0\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề ta có: \(x_1=2x_2\)\(\Rightarrow3x_2=2\Rightarrow x_2=\dfrac{2}{3}\Rightarrow x_1=\dfrac{4}{3}\Rightarrow m=\dfrac{17}{9}\)(TM)

7 tháng 2 2022

a, Thay m = -3 vào pt trên ta được 

\(x^2-2x-4=0\)

\(\Delta'=\left(-1\right)^2-\left(-4\right)=5>0\)

pt có 2 nghiệm pb 

\(x_1=2-\sqrt{5};x_2=2+\sqrt{5}\)

b, Để pt có nghiệm kép 

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m=0\Leftrightarrow m=2\)

 

NV
24 tháng 3 2019

b/ Do x=2 là một nghiệm, thay \(x=2\) vào pt ta được:

\(4-8+m-3=0\Rightarrow m=7\)

\(x_2=\frac{-b}{a}-x_1=4-2=2\)

c/ Để pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Rightarrow4-\left(m-3\right)\ge0\Leftrightarrow m\le7\)

d/ Kết hợp điều kiện bài toán và hệ thức Viet ta có:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=4x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x_2=4\\x_1=4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{16}{5}\\x_2=\frac{4}{5}\end{matrix}\right.\)

\(x_1x_2=m-3\Rightarrow m-3=\frac{64}{25}\Rightarrow m=\frac{139}{25}\)

24 tháng 3 2019

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

26 tháng 5 2020

a)

+) Với m = 0  thay vào phương trình ta có: 1 = 0 => loại 

+) Với m khác 0 

\(\Delta'=m^2-m=m\left(m-1\right)\)

Để phương trình có nghiệm điều kiện là: \(m\left(m-1\right)\ge0\)

TH1: m \(\ge\)0 và m - 1 \(\ge\)

<=> m \(\ge\) 0 và m \(\ge\)

<=> m \(\ge\)

 TH2: m \(\le\) 0 và m - 1  \(\le\)

<=> m \(\le\)0 và m \(\le\)1

<=> m \(\le\)

Đối chiếu điều kiên m khác 0

Vậy m < 0 hoặc m \(\ge\)1

+) Tính nghiệm của phương trình theo m. Tự làm áp dụng công thức

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

Theo định lí vi ét ta có: 

\(x_1x_2=\frac{1}{m};x_1+x_2=\frac{2m}{m}=2\)

Không mất tính tổng quát ta g/s: \(x_1=2x_2\)

=> \(3x_2=2\Leftrightarrow x_2=\frac{2}{3}\)=> \(x_1=\frac{4}{3}\)

Ta có: \(\frac{4}{3}.\frac{2}{3}=\frac{1}{m}\)

<=> \(m=\frac{9}{8}\)( thỏa mãn a )

Thử lại thỏa mãn 

Vậy m = 9/8

8 tháng 4 2018

a) Tìm m sao cho \(\Delta=0\)rồi thay vào pt tìm nghiệm
b)\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=2^2-2.\left(1+2m\right)=8\Rightarrow m=-\frac{3}{2}\)

8 tháng 4 2018

Cho mình bổ sung thêm phần xác định m chút nha

Áp dụng hệ thức viets vào phương trình (1 ) ta có

\(x_1+x_2=S=-2;x_1.x_2=p=1+2m\)  Hai số x1 và x2 tồn tại khi \(S^2-4P\ge0\Leftrightarrow4-4\left(1+2m\right)\ge0\)=> \(-8m\ge0\Rightarrow m\le0\)