Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: m=1
Pt sẽ là -3x+2=0
hay x=2/3(loại)
TH2: m<>1
\(\text{Δ}=\left(-3\right)^2-4\left(m-1\right)\cdot2=9-8\left(m-1\right)=-8m+17\)
Để phương trình có hai nghiệm thì -8m+17>=0
hay m<=17/8
Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=3\)
\(\Leftrightarrow\dfrac{3}{m-1}=3\cdot\dfrac{2}{m-1}=\dfrac{6}{m-1}\)(vô lý)
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
\(a)x^2-2mx-4m-11=0\left(1\right)\)
Khi \(m=1\) thì (1) trở thành: \(x^2-2x-15=0\)
\(\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-15\right)=64\)
\(\sqrt{\Delta}=\sqrt{64}=8>0\)
=> Phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+8}{2}=5\\ x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-8}{2}=-3\)
Vậy \(S=\left\{5;-3\right\}\)
\(c)x^2-2mx-4m-11=0\left(a=1,b=-2m,c=-4m-11\right)\)\(\Delta=b^2-4ac=\left(-2m\right)^2-4.\left(-4m-11\right)\\ =4m^2+16m+44\\ =\left(2m\right)^2+2.2m.4+4^2+28\\ =\left(2m+4\right)^2+28>0\forall m\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m
Lời giải:
a)
Khi $m=2$ phương trình trở thành:
\(x^2-2.2x+2^2-1=0\)
\(\Leftrightarrow x^2-4x+3=0\Leftrightarrow (x-1)(x-3)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\)
b)
Để pt có hai nghiệm phân biệt thì:
\(\Delta'=m^2-(m^2-1)>0\Leftrightarrow 1>0\) (luôn đúng với mọi số thực $m$)
Khi đó áp dụng hệ thức Viete có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-1\end{matrix}\right.\)
Do đó: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{2}\)
\(\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=\frac{1}{2}\Leftrightarrow \frac{2m}{m^2-1}=\frac{1}{2}\)
\(\Rightarrow m^2-1=4m\Leftrightarrow m^2-4m-1=0\)
\(\Leftrightarrow (m-2)^2=5\Rightarrow \left[\begin{matrix} m=2+\sqrt{5}\\ m=2-\sqrt{5}\end{matrix}\right.\) (đều chọn)
a) đơn giản (bước đệm làm b thôi
b) m thỏa mãn đồng thời hệ \(\left\{{}\begin{matrix}f\left(0\right)\ne0\\\Delta>0\\\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\)
\(\left(1\right)\Leftrightarrow0-0+m^2-1\ne0\Leftrightarrow m\ne\left\{\pm1\right\}\)
\(\left(2\right)\Leftrightarrow\Delta'_{\left(x\right)}=m^2-m^2+4=4>0\forall m\Rightarrow m\in R\backslash\left\{\pm1\right\}\)
\(\left(3\right)\Leftrightarrow\dfrac{x_2+x_1}{x_1.x_2}=\dfrac{1}{2}\)
với đk m<=> \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m^2-1\\2\left(x_1+x_2\right)=x_1.x_2\end{matrix}\right.\)\(\Leftrightarrow m^2-4m-1=0\)
\(\Delta'_{\left(m\right)}=2^2+1=5\Rightarrow m=2\pm\sqrt{5}\) thỏa mãn đk m nhận