K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

         `x^2 - 2 ( m + 2 ) x + m^2 + 7 = 0` `(1)`

`a)` Thay `m = 1` vào `(1)`. Ta có:

     `x^2 - 2 ( 1 + 2 ) x + 1^2 + 7 = 0`

`<=> x^2 - 6x + 8 = 0`

Ptr có: `\Delta' = b'^2 - ac = (-3)^2 - 8 = 1 > 0`

  `=>` Ptr có `2` `n_o` pb

`x_1 = [ -b' + \sqrt{\Delta'} ] / a = [ -(-3) + \sqrt{1} ] / 1 = 4`

`x_2 = [ -b' - \sqrt{\Delta'} ] / a = [ -(-3) - \sqrt{1} ] / 1 = 2`

Vậy với `m = 1` thì `S = { 2 ; 4 }`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)` Ptr `(1)` có nghiệm `<=> \Delta' >= 0`

                                     `<=> b'^2 - ac >= 0`

                                     `<=> [ - ( m + 2 ) ]^2 - ( m^2 + 7 ) >= 0`

                                     `<=> m^2 + 4m + 4 - m^2 - 7 >= 0`

                                     `<=> 4m - 3 >= 0`

                                     `<=> m >= 3 / 4`

Với `m >= 3 / 4`, áp dụng Vi-ét: `{(x_1 + x_2 = [-b] / a = 2m +4),(x_1 . x_2 = c / a = m^2 + 7):}`

Ta có: `-2x_1 + x_1 . x_2 - 2x_2 = 4`

  `<=>x_1 . x_2 - 2 ( x_1 + x_2 ) = 4`

  `<=> m^2 + 7 - 2 ( 2m +4 ) = 4`

  `<=>m^2 + 7 - 4m - 8 - 4 = 0`

  `<=> m^2 - 4m -5 = 0`

Ptr có: `\Delta' = b'^2 - ac = (-2)^2 - (-5) = 9 > 0`

`=>` Ptr có `2` `n_o` pb

`m_1 = [ -b' + \sqrt{\Delta'} ] / a = -(-2) + \sqrt{9} = 5`  (t/m)

`m_2 = [ -b' - \sqrt{\Delta'} ] / a = -(-2) - \sqrt{3} = -1` (ko t/m)

Vậy `m = 5` thì ptr có `2` nghiệm t/m yêu cầu đề bài

18 tháng 4 2022

\(∘Angel\)

\(a)\) Thay \(m=1\) vào \((1)\) cta có : 

\(x^2− 2 ( 1 + 2 ) x + 1 ^2 + 7 = 0\)

\(x ^2 − 6 x + 8 = 0\)

Pt có : \(Δ ' = b ' ^2 − a c = ( − 3 ) ^2 − 8 = 1 > 0\)

Pt có 2 \(n\)\(o\) pb

\(x1=\dfrac{b'+\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)+\sqrt{1}}{1}=4\)

\(x2=\dfrac{-b'-\sqrt{\text{Δ '}}}{a}=\dfrac{-\left(-3\right)-\sqrt{1}}{1}=2\)

\(m=1\) thì \(S=\)\(\left\{2;4\right\}\)

2 tháng 6 2019

chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^

\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)

đến đây Vi-ét đc òi

2 tháng 6 2019

Gotcha Tokoyami

Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)

          \(=m^2-4m+4+4m^2-12m+16\)

          \(=5m^2-16m+20\)

           \(=5\left(m^2-\frac{16}{5}m+4\right)\)

            \(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)

            \(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)

Nên pt có 2 nghiệm phân biệt với mọi m 

a, Với m = 0 thì pt trở thành

\(x^2+2x-4=0\)

Có \(\Delta'=1+4=5>0\)

\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)

b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)

nên pt có 2 nghiệm trái dấu

c,  Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới

NV
22 tháng 3 2023

Phương trình là: \(x^2-mx-2=0\) đúng ko em nhỉ?

22 tháng 3 2023

Dạ đúng ạ

3 tháng 8 2017

Để phương trình có 2 nghiệm \(x_1;x_2\)thì \(\Delta'=\left(m+2\right)^2-m^2-7>0\Rightarrow m^2+4m+4-m^2-7>0\)

\(\Rightarrow4m-3>0\Rightarrow m>\frac{3}{4}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m+4\\x_1.x_2=m^2+7\end{cases}}\)

Yêu cầu bài toán \(\Leftrightarrow m^2+7=4+2\left(2m+4\right)\Leftrightarrow m^2-4m-5=0\)

\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\Leftrightarrow\orbr{\begin{cases}m=-1\left(l\right)\\m=5\left(tm\right)\end{cases}}\)

Vậy \(m=5\)

30 tháng 5 2021

Thay m=-1 vào pt ta được: 

\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)

Vậy...