K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

Công thức nghiệm Vi-et

Ta giải

\(ax2+b3\cdot a2c=0,1\)

12 tháng 7 2016

Ta có theo Viet: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1.x_2=\frac{c}{a}\end{cases}}\Rightarrow\hept{\begin{cases}x^2_2+x_2=-\frac{b}{a}\\x^3_2=\frac{c}{a}\end{cases}\Rightarrow\frac{x^2_2+x_2}{x_2^3}=-\frac{b}{c}=\frac{x_2+1}{x_2^2}}\)

Lại có \(\frac{b^3+a^2c+ac^2}{abc}=\frac{b^2}{ac}+\frac{a}{b}+\frac{c}{b}=\left(x_2^2+x_2\right)\frac{x_2+1}{x_2^2}-\frac{1}{x_2^2+x_2}-\frac{x_2^2}{x_2+1}\)

\(=\frac{x_2\left(x_2+1\right)^2}{x_2^2}-\frac{1}{x_2^2+x_2}-\frac{x_2^2}{x_2+1}=\frac{\left(x_2+1\right)^2}{x_2}-\frac{1}{x_2\left(x_2+1\right)}-\frac{x_2^2}{x_2+1}\)

\(=\frac{\left(x_2^2+2x_2+1\right)\left(x_2+1\right)-1-x_2^3}{x_2\left(x_2+1\right)}=\frac{x_2^3+3x_2^2+3x_2+1-1-x_2^3}{x_2^2+x_2}\)

\(=\frac{3\left(x_2^2+x_2\right)}{x_2^2+x_2}=3\)

Từ đó suy ra \(b^3+a^2c+ac^2=3abc\left(đpcm\right).\)

24 tháng 3 2017

\(ax^2+bx+c=0\)

Do phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)

\(\Rightarrow b,c\) trái đấu

Xét \(cx^2+bx+a=0\)

Giả sử phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )

Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt

\(\Rightarrow\) đpcm

Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )

Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )

Từ ( 1 ) và ( 2 )

Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )

DD
10 tháng 6 2021

\(ax_1+bx_2+c=0\)

\(x_2\)là nghiệm phương trình nên \(ax_2^2+bx_2+c=0\Rightarrow a\left(x_2^2-x_1\right)=0\Leftrightarrow x_2^2-x_1=0\Leftrightarrow x_1=x_2^2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\).

Ta sẽ chứng minh \(a^2c+ac^2+b^3-3abc=0\).

Thật vậy, ta có: 

\(a^2c+ac^2+b^3-3abc=0\)

\(\Leftrightarrow\frac{c}{a}+\left(\frac{c}{a}\right)^2+\left(\frac{b}{a}\right)^3-\frac{3bc}{a^2}=0\)

\(\Rightarrow x_1x_2+x_1^2x_2^2-\left(x_1+x_2\right)^3+3x_1x_2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow x_1x_2+x_1^2x_2^2-x_1^3-x_2^3=0\)

\(\Leftrightarrow x_2^2x_2+x_1^2x_2-x_1^3-x_2^3=0\)

\(\Leftrightarrow0x_1^3+0x_2^3=0\)đúng.

Ta biến đổi tương đương nên đẳng thức ban đầu cũng đúng. 

Khi đó \(M=0+2018=2018\).

15 tháng 5 2016

+xét đen ta là được

+ dùng cosi là xong

12 tháng 3 2020

Chỉ biết phân tích mù mịt cho đẹp thôi chứ không biết đúng hay sai?

Ta có \(L=\left(3-\frac{b}{a}+\frac{c}{a}\right):\left(5-\frac{3b}{a}+\left(\frac{b}{a}\right)^2\right)\)(chia cả tử và mẫu cho a2 khác 0)

Theo hệ thức Vi - et, \(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\)

Theo giả thiết \(0\le x_1\le x_2\le2\)\(\Rightarrow\hept{\begin{cases}x_1^2\le x_1x_2\\x_2^2\le4\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2\le x_1x_2+4\Leftrightarrow\left(x_1+x_2\right)^2\le3x_1x_2+4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4\le3x_1x_2\Leftrightarrow\left(x_1+x_2+2\right)\left(x_1+x_2-2\right)\le3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)-3\left(x_1+x_2-2\right)\le3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2+5\right)\left(x_1+x_2-2\right)\le3\left(x_1x_2+x_1+x_2-2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)-10\le3\left(x_1x_2+x_1+x_2-2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5\le3\left(x_1x_2+x_1+x_2+3\right)\)

Vì \(\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)+5>0\)nên

\(L=\frac{3+\left(x_1+x_2\right)+x_1x_2}{5+3\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}\ge\frac{1}{3}\)

Dấu "=" khi \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\)hoặc \(\hept{\begin{cases}x_1=2\\x_2=2\end{cases}}\)

1 tháng 12 2020

Tham khảo:

Câu hỏi của Nguyễn Ngọc Ánh - Toán lớp 10 | Học trực tuyến