K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

a. Với k = 0

\(pt\Leftrightarrow9x^2-25=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

b. Có: x = -1 là nghiệm của pt

=> \(9-25-k^2+2k=0\)

\(\Leftrightarrow-k^2+2k-16=0\)

\(\Leftrightarrow-\left(k^2-2k+1\right)-15=0\)

\(\Leftrightarrow\left(k-1\right)^2=-15\) (vô lí)

Vậy không có gt nào của k thỏa mãn pt có nghiệm x= -1

2 tháng 5 2018

cám ơn

vuivui

2 tháng 5 2018

a,thay k=0 vào PT ta có

\(9x^2-25=0\)

\(\Leftrightarrow9\left(x^2-\left(\frac{5}{3}\right)^2\right)=0\)

\(\Leftrightarrow9\left(x-\frac{5}{3}\right)\left(x+\frac{5}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=0\\x+\frac{5}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-\frac{5}{3}\end{cases}}\)

b,thay x=1 vào PT ta  có

\(9-25-k^2-2k=0\)

\(\Leftrightarrow k^2+2k+16=0\)

\(\Leftrightarrow\left(k+1\right)^2+15\ge0\)

Vậy ko có giá tri k thỏa mãn ĐK bài toán

22 tháng 2 2022

`Answer:`

`a)` Thay `k=0` vào phương trình được:

`9x^2-25=0`

`<=>(3x-5)(3x+5)=0`

`<=>3x+5=0` hoặc `3x-5=0`

`<=>x=-5/3` hoặc `x=5/3`

`b)` Thay `x=-1` vào phương trình được:

`9-25-k^2+2k=0`

`<=>-k^2+2k-16=0`

`<=>-(k^2-2k+1)-15=0`

`<=>-(k-1)^2-15=0`

Mà `-(k-1)^2<=0∀k=>-(k-1)^2-15<0`

Vậy phương trình vô nghiệm.

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

13 tháng 2 2020

a) k = 0 thì pt trở thành \(9x^2-25=0\Leftrightarrow x^2=\frac{25}{9}\)

\(\Leftrightarrow x=\pm\sqrt{\frac{5}{3}}\)

b) Thay x = -1 vào pt 

\(9-25-k^2+2k=0\Leftrightarrow k^2-2k=-16\)

Ta có \(\Delta=2^2-4.16< 0\)

Vậy ko có k để x=-1 là nghiệm

14 tháng 4 2020

k=0 => \(9x^2-25=0\)

\(\Leftrightarrow x^2=\frac{25}{9}\Leftrightarrow x=\pm\frac{5}{3}\)

x=-1 => 9-25-k2=2k=0

=> k2-2k+16=0

=> không có giá trị k thỏa mãn

25 tháng 4 2017

a) Thay k = 0 vào ta có pt: 9x- 25 = 0 nên x = 5/3 hoặc x = -5/3

b) Để pt nhận x = -1 làm nghiệm thì: 9 - 25 - k+ 2k = 0 tương đương - k+ 2k - 16 =0

Mặt khác - k+ 2k - 16 = - ( k2 - 2k + 16) = -[(k - 1)+ 15] < 0 

Suy ra không có giá trị nào của k thỏa mãn yêu cầu bài toán

14 tháng 6 2017

4x2 - 25 + k2 + 4kx = 0

<=> ( 2x + k )2 - 25 = 0

a) Với k = 0 => ( 2x + 0 )2 - 25 = 0

4x2 - 25 = 0

( 2x - 5).(2x+5) = 0

=> \(\left[{}\begin{matrix}2x-5=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2,5\\x=-2,5\end{matrix}\right.\)

b) Với k = -3 => ( 2x-3)2 - 25 =0

( 2x-3-5 ). ( 2x-3+5) = 0

( 2x-8). (2x+2) =0

=> \(\left[{}\begin{matrix}2x-8=0\\2x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

c) Để pt nhận x= -2 làm nghiệm

=> 4. (-2)2 - 25 + k2 +4k . (-2) =0

4 . 4 - 25 + k2 - 8k = 0

k2 -8k - 9 = 0

( k -9 ). ( k + 1 ) =0

=> \(\left[{}\begin{matrix}k-9=0\\k+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}k=9\\k=-1\end{matrix}\right.\)

Vậy nếu k=9 hoặc k=-1 thì pt nhận x=-2 làm nghiệm

14 tháng 6 2017

a, Thay k=0 vào phương trình, ta có:

\(4x^2-25=0\)

\(4x^2=25\Rightarrow x=\sqrt{\dfrac{25}{4}}=\dfrac{5}{2}.\)

Vậy nghiệm của PT là \(\dfrac{5}{2}\)khi k=0.

b, Thay k=-3 vào phương trình, ta có:

\(4x^2-25+9-12x=0\)

\(4x^2-12x=16\)

\(x^2-3x=4\)

\(x^2-3x-4=0\)

\(x^2-4x+\left(x-4\right)=0\)

\(\left(x-4\right)\left(x+1\right)=0\)

\(\Rightarrow x-4=0\) hoặc \(x+1=0\)

\(\Rightarrow x=4\) hoặc \(x=-1\)

Vậy phương trình có hai nghiệm là 4 và -1 khi k=-3.

c, Cho : \(16-25+k^2-8k=0\)

\(k^2-8k-9=0\)

\(k^2-9k+\left(k-9\right)=0\)

\(\left(k-9\right)\left(k+1\right)=0\)

\(\Rightarrow k-9=0\) hoặc \(k+1=0\)

\(\Rightarrow k=9\) hoặc \(k=-1\)

Vậy các giá trị của k là 9 và -1 để pt nhận x=-2 làm nghiệm.