Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tìm m sao cho \(\Delta=0\)rồi thay vào pt tìm nghiệm
b)\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=2^2-2.\left(1+2m\right)=8\Rightarrow m=-\frac{3}{2}\)
Cho mình bổ sung thêm phần xác định m chút nha
Áp dụng hệ thức viets vào phương trình (1 ) ta có
\(x_1+x_2=S=-2;x_1.x_2=p=1+2m\) Hai số x1 và x2 tồn tại khi \(S^2-4P\ge0\Leftrightarrow4-4\left(1+2m\right)\ge0\)=> \(-8m\ge0\Rightarrow m\le0\)
a) pt có nghiệm kép \(\Leftrightarrow\)\(\Delta=45-12m=0\)\(\Leftrightarrow\)\(m=\frac{15}{4}\)
b) Viet \(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=3m-11\end{cases}}\)
\(2019=2017x_1+2018x_2=2017\left(x_1+x_2\right)+x_2=2017+x_2\)\(\Leftrightarrow\)\(x_2=2\)\(\Rightarrow\)\(x_1=-1\)
\(\Rightarrow\)\(3m-11=-2\)\(\Leftrightarrow\)\(m=3\)
a) Ta có: \(\Delta=45-12m\). Để pt có nghiệm kép thì:
\(\Delta=45-12m=0\)
\(\Leftrightarrow m=\frac{15}{4}\Rightarrow x_1=x_2=\frac{1}{2}\)
b) Để pt (1) có 2 nghiệm phân biệt x1;x2 thì \(\Delta=45-12m>0\)
\(\Leftrightarrow m< \frac{15}{4}\). Theo hệ thức Vi-et x1+x2=1; x1x2=3m-11. Khi đo hệ:
\(\hept{\begin{cases}x_1+x_2=1\\2017x_1+2018x_2=2019\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=-1\\x_2=2\end{cases}}}\)
Mà ta có: x1x2=3m-11
<=> m=3 (nhận)
Vậy m=3 là giá trị cần tìm
x\(^2\)- (m-1)x + 4=0 ( a=1; b=-(m-1);c=4)
\(\Delta\)= (-(m-1))2-4x4x1
\(\Delta\)=m2-2m+1-4
\(\Delta\)=m2 - 2m -3
Để pt đã cho có n kép thì \(\Delta\)=0
\(\Leftrightarrow\)m2-2m -3 =0 ( đk m \(\ne\)0 ) (a = 1 ;b =-2 ; c= -3 )
Ta có ; a- b + c = 1 -(-2) +( -3)=0
nên pt đã cho có 2 nghiêm m1= -1 ; m2= \(\frac{-c}{a}\)= -\(\frac{-3}{1}\)=3
vậy pt đã cho có 2 n m1 =-1 ; m2= 3
c,
\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)\\ =m^2+6m+9-m^2-3\\ =6m+6\)
Phương trình có nghiệm kép
\(\Delta'=0\\ 6m+6=0\\ \Leftrightarrow m=-1\)
Với m = -1
\(\Rightarrow x^2-4x+4=0\\ \Leftrightarrow x=2\)