Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sua de \(\frac{3}{x^4-x^3+x-1}\) \(-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\) (dk \(x\ne+-1\) )
P=\(\frac{3}{\left(x^2-1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x^2-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
=\(\frac{2}{x^4+x^2+1}>0\)
P\(< \frac{32}{9}\Leftrightarrow\frac{2}{x^4+x^2+1}< \frac{32}{9}\)
\(\Leftrightarrow16x^4+16x^2+7>0\)
\(\Rightarrow\)\(0< P< \frac{32}{9}\) VOI X KHAC 1;-1
1. \(A=\frac{3x^4+16}{x^3}=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\)
\(\ge4\sqrt[4]{x\cdot x\cdot x\cdot\frac{16}{x^3}}=4\cdot2=8\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{16}{x^3}\Leftrightarrow x=2\)
Vậy Min A = 8 \(\Leftrightarrow x=2\)
3. \(A=\frac{9x}{2-x}+\frac{2-x}{x}+1\)
\(\ge2\sqrt{\frac{9x}{2-x}\cdot\frac{2-x}{x}}+1=2\cdot3+1=7\)
Dấu "=" \(\Leftrightarrow\frac{9x}{2-x}=\frac{2-x}{x}\Leftrightarrow3x=2-x\Leftrightarrow x=\frac{1}{2}\)
Vậy Min A = 7 \(\Leftrightarrow x=\frac{1}{2}\)