\(Q=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Bài 1

a, \(\left(\frac{\sqrt{y}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x}\left(\sqrt{y}-1\right)}{\sqrt{y}-1}\right).\sqrt{y}\left(\sqrt{x}-1\right)\)

=\(\left(\sqrt{y}+\sqrt{x}\right).\sqrt{y}\left(\sqrt{x}-1\right)\)

b,\(\sqrt{8+2.2\sqrt{2}+1}-\sqrt{8-2.2\sqrt{2}+1}\)

=\(\sqrt{\left(\sqrt{8}+1\right)^2}-\sqrt{\left(\sqrt{8}-1\right)^2}\)

=\(\sqrt{8}+1-\left(\sqrt{8}-1\right)\)

=2

Bài 2

a, ĐKXĐ : x\(\ge\)0, x\(\pm\)1

b, Q=\(\left(\frac{\sqrt{x}\left(1+\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

=\(\left(\frac{\sqrt{x}\left(1+\sqrt{x}\right)+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

=\(\left(\frac{\sqrt{x}+x+\sqrt{x}-x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

=\(\frac{2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}-\frac{3-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)

=\(\frac{2\sqrt{x}-3+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)

=\(\frac{3\sqrt{x}-3}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)

=\(\frac{-3}{1+\sqrt{x}}\)

c, de Q = 2 => \(\frac{-3}{1+\sqrt{x}}\)=2 =>1+\(\sqrt{x}\)=-6 =>\(\sqrt{x}\)=-7 =>x vô nghiệm

21 tháng 10 2016

Bài 1: \(\left(\frac{\sqrt{xy}-\sqrt{y}}{\sqrt{x}-1}+\frac{\sqrt{xy}-\sqrt{x}}{\sqrt{y}-1}\right)\cdot\left(\sqrt{xy}-\sqrt{y}\right)\)

\(=\left(\frac{\sqrt{y}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x}\left(\sqrt{y}-1\right)}{\sqrt{y}-1}\right)\cdot\left(\sqrt{xy}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}-\sqrt{y}\right)\)

\(\sqrt{9+4\sqrt{2}}-\sqrt{9-4\sqrt{2}}=\sqrt{\left(2\sqrt{2}+1\right)^2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =2\sqrt{2}+1-2\sqrt{2}+1=2\)

21 tháng 10 2016

Bài 2:

\(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(ĐK:x\ge0;x\ne1\right)\)

\(=\frac{-\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3}{\sqrt{x}+1}\)

Để Q=2

=> \(\frac{-3}{\sqrt{x}+1}=2\)

\(\Leftrightarrow2\left(\sqrt{x}+1\right)=-3\)

\(\Leftrightarrow2\sqrt{x}+2=-3\)

\(\Leftrightarrow2\sqrt{x}=-5\) (vô lí)

Vậy k có giá trị nào của x thỏa mãn Q=2

30 tháng 8 2021

Tìm đk , rút gọnundefined

30 tháng 8 2021

ĐK : x > 2 

\(\frac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\frac{1}{x-1}\right)\)

\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}\left(\frac{x-1-1}{x-1}\right)\)

\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}\left(\frac{x-2}{x-1}\right)\)

Với x > 2 

\(=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}\left(\frac{x-2}{x-1}\right)=\frac{2\sqrt{x-1}}{x-1}\)