\(x^2-2x-3m^2=0\) ( m là tham số)

Tìm tất cả giá trị của m để phư...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Ta có \(\Delta\) = (-2)2 - 4 . 1 . (-3m2)

= 4 + 12m2

Ta có m2 \(\ge\) 0 => 12m2 \(\ge\) 0

=> 4 + 12m2 > 0

=> Phương trình luôn có nghiệm với mọi m

Ta có x1 + x2 = \(\dfrac{-b}{a}\) = \(\dfrac{-\left(-2\right)}{1}\) = 2

x1x2 = \(\dfrac{c}{a}=\dfrac{-3m^2}{1}\) = -3m2

\(\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}\) = \(\dfrac{8}{3}\)

=> 3x12 - 3x22 = 8x1x2

=> x12 - x22 = \(\dfrac{8}{3}\) x1x2

=> ( x1 + x2 ) . ( x1 - x2 ) = \(\dfrac{8}{3}\)x1x2

=> 2( x1 - x2 ) = \(\dfrac{8}{3}\) . (-3m2)

=> 2( x1 - x2 ) = -8m2

=> x1 - x2 = -4m2

=> \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1-x_2=-4m^2\end{matrix}\right.\)

Giải bằng phương pháp thế, ta được

=> \(\left\{{}\begin{matrix}x_1=2-2m^2\\x_2=2m^2\end{matrix}\right.\)

để có hai nghiệm khác 0

=> \(\left\{{}\begin{matrix}2-2m^2\ne0\\2m^2\ne0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2m^2\ne2\\m^2\ne0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}m^2\ne1\\m\ne0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}m\ne1\\m\ne0\end{matrix}\right.\)

Phương trình luôn có nghiệm với mọi m( m \(\ne\) 1; 0 ) thỏa mãn điều kiện \(\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}\) = \(\dfrac{8}{3}\)

21 tháng 5 2018

Cảm ơn bạn rất nhiều!

P/S: Bạn vừa cứu mạng mình đấy! :D

23 tháng 1 2020

1+1=?

2+2=?

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

15 tháng 8 2021

Phương trình có hai nghiệm phân biệt <=> Δ ≥ 0 <=> (-2)2 - 4.1/2.(m-1) ≥ 0 <=> 4 - 2m + 2 ≥ 0 <=> m ≤ 3

Theo hệ thức Viète : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=2m-2\end{cases}}\)

Ta có : \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)+96=0\)

\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+96=0\Leftrightarrow\left(2m-2\right)\left(18-2m\right)+96=0\)

\(\Leftrightarrow m^2-10-15=0\)

\(\Delta=b^2-4ac=100+60=160\)

\(\Delta>0\), áp dụng công thức nghiệm thu được \(m_1=5+2\sqrt{10}\left(ktm\right);m_2=5-2\sqrt{10}\left(tm\right)\)

Vậy với \(m=5-2\sqrt{10}\)thì thỏa mãn đề bài

15 tháng 8 2021

\(a=\frac{1}{2};b=-2;c=m-1\)

\(\Delta=\left(-2\right)^2-4.\frac{1}{2}.\left(m-1\right)\)

\(\Delta=4-2\left(m-1\right)\)

\(\Delta=4-2m+2\)

\(\Delta=6-2m\)

để pt có 2 nghiệm phân biệt thì \(6-2m>0\)

\(< =>m< 3\)

áp dụng vi - ét

\(\hept{\begin{cases}x_1+x_2=\frac{2}{\frac{1}{2}}=4\\x_1x_2=\frac{m-1}{\frac{1}{2}}=2m-2\end{cases}}\)

\(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)

\(\left(2m-2\right)\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}\right)+48=0\)

\(\left(2m-2\right)\left(\frac{4^2-4m-4}{2}\right)+48=0\)

\(\left(2m-2\right)\left(6-2m\right)+48=0\)

\(12m-12-4m^2+4m+48=0\)

\(-4m^2+16m+36=0\)

\(\sqrt{\Delta}=\sqrt{16^2-4.\left(-4\right).36}=8\sqrt{13}\)

\(m_1=\frac{8\sqrt{13}-16}{-8}=2-\sqrt{13}\left(TM\right)\)

\(m_2=\frac{-8\sqrt{13}-16}{-8}=2+\sqrt{13}\left(KTM\right)\)

vậy \(m=2-\sqrt{13}\)thì thỏa mãn yêu cầu \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)

13 tháng 5 2017

(x1-x2)2=16
<=>(x1+x2)2-4x1x2=16
<=>36-4m=16
<=>m=5( thõa mãn điều kiện delta dương)

28 tháng 5 2018

tính vi ét & bình phương lên

28 tháng 5 2018

Tính delta => Tìm điều kiện của m để PT có 2 nghiệm x1, x2 là delta > 0.

Áp dụng Viets vào để tìm x1+x2 và x1.x2 theo m.

Sau đó: vì |x1-x2|=3 => (x1-x2)^2=9 <=> x12 + x22 -2x1.x2=9 <=> (x1+x2)2 - 4x1.x2=9

Sau đó thay x1+x2 và x1.x2 (theo Viets) vào để tìm được m.

Đối chiếu với đk của m là được