K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

\(x^2-2\left(m-1\right)x+m-5=0\)

Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

Đặt \(A=\left|x_1-x_2\right|\)

\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)

\(=\left(2m-3\right)^2+15\ge15\)

\(\Rightarrow A\ge\sqrt{15}\)

\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)

29 tháng 5 2021

ok bạn

 

21 tháng 5 2017

Theo hệ thức Vi-ét ta có:

x1+x2=\(-\frac{-1}{1}=1\)

x1x2=\(\frac{1+m}{1}=1+m\)

=> x1x2(x1x2-2)=3(x1+x2)

<=> (1+m)(1+m-2)=3

<=> m2-1=3

<=>m2=4

<=> m=-2 hoặc m =2 (loại)

Vậy m = -2

21 tháng 3 2019

Pương trình trên có 2 nghiệm  khi và chỉ khi:\(\Delta\ge0\)

<=> \(m^2-4m\ge0\Leftrightarrow m\left(m-4\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le0\\m\ge4\end{cases}}\)(*)

Với điều kiện (*) Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=m\end{cases}}\)

Xét \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

Từ đó ta có phương trình ẩn m:

\(\left(-m\right)^2-4m=4\Leftrightarrow m^2-4m-4=0\)\(\Leftrightarrow\orbr{\begin{cases}m=2+\sqrt{2}\\m=2-\sqrt{2}\end{cases}}\)( thỏa mãn *)

vậy:,...

6 tháng 6 2023

\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

Phương trình có hai nghiệm phân biệt :

\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)

Theo vi ét : 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)

Vậy \(m=2\)

28 tháng 3 2020

phương trình: x^2-(m+1)x+2m-2=0 (1)

phương trình(1) là ptbh ẩn x có:đen ta = (-(m+1))^2 -4.1.(2m-2) =m^2+2m+1-8m+8 =m^2-6m+9 = (m-3)^2 với mọi m thuộc r

phương trình (1) có 2 nghiệm pb khi và chỉ khi đen ta lớn hơn 0 suy ra (m-3)^2 lớn hơn 0

khi và chỉ khi m-3  lớn hơn 0. ki và chỉ khi m lớn hơn 3.

theo hệ thức vi ét ta có x1+x2=m+1 (2) ;x1.x2=2m-2 (3)

có 3(x1+x2)-X1.X2=10 (4)

từ (2) (3) (4) suy ra 3(m+1)-(2m-2)=10

khi và chỉ khi 3m+3-2m+2=10

khi và chỉ khi m+5=10

khi và chỉ khi m=5

vậy khi m=5  thì pt(1) có 2n pb x1,x2 thỏa mãn 3(x1+x2)-x1.x2=10

28 tháng 3 2020

Cách 1:

Từ pt ta có:

\(\Delta=\left(m-3\right)^2>0\)

=>x1=(m-1-m+3)/2=1

->x2=(m-1+m-2)/2=(2m-3)/2

Bạn thay x1,x2 vào rồi tính nha tới đây thì đơn giản rồi.

Cách 2:

từ pt ta có:

\(\hept{\begin{cases}\Delta=\left(m-3\right)^2>0\\x_1+x_2=m-1\\x_1x_2=2-2m\end{cases}}\)

Bạn cũng thay vào rồi tính nha.

Đúng thì nhớ k cho mình nha.