Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-m}{x-2}-\frac{x+m}{x+1}\)
\(=\frac{x^2+x-mx-m-x^2+2x+mx-2m}{\left(x-2\right)\left(x+1\right)}\)
\(=\frac{3\left(x-m\right)}{\left(x-2\right)\left(x+1\right)}\)
vậy ...........
1) Phương trình ban đầu tương đương :
\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)
Đặt \(a=2x-2,b=2019x-2018\)
\(\Rightarrow a+b=2021x-2020\)
Khi đó phương trình có dạng :
\(\left(a+b\right)^3=a^3+b^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)
\(\Leftrightarrow\)Hoặc \(2x-2=0\)
Hoặc \(2019x-2018=0\)
Hoặc \(2021x-2020=0\)
\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)
Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)
\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)
\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)
\(\Leftrightarrow-3x-xm=x-m\)
\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)
\(\Leftrightarrow x=\frac{m}{m+4}\)
Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)
\(\Rightarrow\frac{m}{m+4}\ge0\)
Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)
a)\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)
\(\Leftrightarrow x^2+x-3=x^2-\left(m-1\right)x-m\)
\(\Leftrightarrow m.x+m-3=0\)
\(\Leftrightarrow m.x=3-m\)
Để phương trình (1) nhận \(x=4\)là nghiệm của phương trình thì:
\(4.m=3-4=-1\)
\(\Leftrightarrow m=\frac{-1}{4}\)
b) Để phương trình \(a.x+b=0\)có nghiệm duy nhất thì:\(a\ne0\)
\(\Rightarrow\)Phương trình (1) có nghiệm duy nhất \(\Leftrightarrow m\ne0\)
Bổ sung điều kiện: \(\hept{\begin{cases}x\ne m\\x\ne1\end{cases}}\)
\(\Rightarrow m\ne1\)
a) m thỏa mãn điều kiện
b) Bổ sung thêm: Để phương trình (1) có nghiệm duy nhất thì:\(\hept{\begin{cases}m.m+m-3\ne0\\m.1+m-3\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m\ne\frac{-1\pm\sqrt{13}}{2}\\m\ne\frac{3}{2}\end{cases}}\)
ĐKXĐ : \(x\ne5;2m\)
\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)
\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)
\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)
\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)
\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)
ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)
\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1)
=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0
<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0
< => ( 2m + 5 ) x + 2 = 0 (2)
TH1: 2m + 5 = 0 <=> m = -5/2
Khi đó (2) trở thành: 0x + 2 = 0 => phương trình vô nghiệm với mọi x
=> m = -5/2 thỏa mãn
TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2
khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)
( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1
<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)
Giải: \(-\frac{2}{2m+5}=-m-1\)
<=> 2 = ( m + 1 ) ( 2m + 5 )
<=> 2m^2 +7m +3= 0
<=> m = -1/2 hoặc m = -3 (tm m khác -5/2)
Giải: \(-\frac{2}{2m+5}=2\)
<=> 2m + 5 = - 1 <=> m = - 3 (tm)
Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.
TA CÓ : \(m^2x-m=x-1\Leftrightarrow m^2x-x=m-1\)\(\Leftrightarrow x\left(m^2-1\right)=m-1\Leftrightarrow\)\(x=\frac{m-1}{m^2-1}\Leftrightarrow x=\frac{1}{m+1}\)
.MÀ xNGUYÊN NÊN \(\Rightarrow\frac{1}{m+1}\)nguyên\(\Rightarrow m+1\inƯ\left(1\right)\Leftrightarrow m=\left\{-2;0\right\}\)