Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.
\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=\dfrac{m^2-2}{2}\end{matrix}\right.\)
\(\Rightarrow P=\left|m^2-2-m-4\right|=\left|m^2-m-6\right|=\left|\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\right|\)
Do \(-2\le m\le2\Rightarrow0\le\left(m-\dfrac{1}{2}\right)^2\le\dfrac{25}{4}\)
\(\Rightarrow\left(m-\dfrac{1}{2}\right)^2-\dfrac{25}{4}\le0\) \(\Rightarrow P=\dfrac{25}{4}-\left(m-\dfrac{1}{2}\right)^2\le\dfrac{25}{4}\)
\(\Rightarrow P_{max}=\dfrac{25}{4}\) ; dấu "=" xảy ra khi \(m=\dfrac{1}{2}\)
Lời giải:
Để pt có 2 nghiệm pb thì \(\Delta'=m^2-2(m^2-2)>0\Leftrightarrow 2> m> -2\)
Nếu $x_1,x_2$ là nghiệm của pt đã cho thì theo định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)
Khi đó:
\(P=|2x_1x_2+x_1+x_2-4|=|2.\frac{m^2-2}{2}+(-m)-4|\)
\(=|m^2-m-6|=|(m-3)(m+2)|\)
\(=|m-3||m+2|=(3-m)(m+2)=m+6-m^2\) (do \(-2< m< 2\))
\(=\frac{25}{4}-(m-\frac{1}{2})^2\leq \frac{25}{4}\)
Vậy \(P_{\max}=\frac{25}{4}\Leftrightarrow m=\frac{1}{2}\)
1.
\(\Delta'=1-m>0\Rightarrow m< 1\)
Để pt có 2 nghiệm t/m đề bài
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
2. Để pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)
Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)
Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)
3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)
Để pt có 2 nghiệm thỏa mãn đề bài
\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)
\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)
pt có hai nghiệm \(\Leftrightarrow\) \(\Delta'\)= (m+1)2 - 1.(m-4) \(\ge\) 0
\(\Leftrightarrow\) m2 + m +5 \(\ge\) 0 ( đúng \(\forall\)m\(\in R\))
Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m-4\end{matrix}\right.\)
M = x1(1-x2) + x2(1-x1) = x1 + x2 - 2x1x2 = 2(m+1) - 2(m-4) =10
\(\Delta'=4-m+1=5-m\ge0\Rightarrow m\le5\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
a/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-40=0\)
\(\Leftrightarrow4^3-12\left(m-1\right)-40=0\Rightarrow m=3\)
b/ \(P=\left(x_1x_2\right)^2+5\left(x_1+x_2\right)^2-10x_1x_2+4\)
\(=\left(m-1\right)^2+5.4^2-10\left(m-1\right)+4\)
\(=m^2-12m+95\)
\(=\left(7-m\right)\left(5-m\right)+60\)
Do \(m\le5\Rightarrow\left\{{}\begin{matrix}7-m>0\\5-m\ge0\end{matrix}\right.\) \(\Rightarrow\left(7-m\right)\left(5-m\right)\ge0\)
\(\Rightarrow P\ge60\Rightarrow P_{min}=60\) khi \(m=5\)
\(5\left(x^2_1+x_2^2\right)=5\left(x_1^2+x_2^2+2x_1x_2-2x_1x_2\right)=5\left(x_1+x_2\right)^2-10x_1x_2\)
Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-2m-6\\x_1x_2=m^2-3\end{matrix}\right.\)
\(P=5\left(x_1+x_2\right)-2x_1x_2=5\left(-2m-6\right)-2\left(m^2-3\right)\)
\(=-2m^2-10m-24\)
\(=-2\left[\left(m^2+5m+\frac{25}{4}\right)+\frac{23}{4}\right]\)
\(=-\frac{46}{4}-2\left(m+\frac{5}{2}\right)^2\le-\frac{46}{4}=-\frac{23}{2}\)
Vậy GTLN của P là \(-\frac{23}{2}\) khi \(m=-\frac{5}{2}\)