K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

\(x^2+2x-1-m^2=0\Leftrightarrow\left(x-1\right)^2=m^2\)

                                    \(\Leftrightarrow x-1=\sqrt{m^2}=\left|m\right|\)

                                    \(\Leftrightarrow\left[{}\begin{matrix}x-1=m\\x-1=-m\end{matrix}\right.\)

                                    \(\Leftrightarrow\left[{}\begin{matrix}x=1+m\\x=1-m\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x_1=1+m\\x_2=1-m\end{matrix}\right.\)

16 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

      `<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`

                   `<=>m^2+m+3 > 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`

                        `<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`

              `=>x_1+x_2-2x_1.x_2=6`

16 tháng 5 2023

thanks

20 tháng 4 2020

lo hbfbekef evef

frgrgthtgr

t

gr

grgrgrgfrgrf

r

g

rg

r

g

r

gr

f

r

r

br

g

r

gr

gr

grg

r

g

eh

h

h

t

tt

t

t

thr

htr

htht

rh

ththt

ht

ht

h

h

ht

ht

ht

h

frorgew

rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f

v

r

re

eb

tg

bet

eb

1 tháng 6 2020

\(\sqrt[]{}\)

9 tháng 2 2021

- Xét phương trình đề cho có :

\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)

\(=m^2-3m+3\ge\dfrac{3}{4}>0\)

- Phương trình luôn có hai nghiệm phân biệt với mọi m .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

17 tháng 4 2020

tìm đk m khác 0

 đenta' = (m+1)2-m2-3m= 2m-2 >0 (=) m>1

áp dụng hệ thức vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}=2+\frac{1}{m}\\x_1.x_2=\frac{m+3}{m}=1+\frac{3}{m}\end{cases}}\)

=) x1x- 3(x1+x2)=-5

8 tháng 1 2024

a) Để phương trình có nghiệm \(x_1,x_2\)

Thì \(\Delta'>0\)

\(\Leftrightarrow\left(m-2\right)^2-1.\left(2m-5\right)>0\)

\(\Leftrightarrow m^2-4m+4-2m+5>0\)

\(\Leftrightarrow m^2-6m+9>0\)

\(\Leftrightarrow\left(m-3\right)^2>0\)

\(\Leftrightarrow m\ne3\)

b)Với m khác 3. Theo hệ thức viet ta có

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-4\left(1\right)\\x_1.x_2=2m-5\left(2\right)\end{matrix}\right.\)

Lấy (1) trừ (2) ta được

\(x_1+x_2-x_1.x_2=1\) không phụ thuộc vào m

 

 

 

28 tháng 10 2019

Đáp án D

11 tháng 5 2021

a) Ta có: △' = [-(m+1)]2 - m + 2 

                   = m2 + 2m + 1 - m + 2

                   = m2 + m + 1

                   = (m + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\) > 0 ∀m

=> Phương trình luôn có 2 nghiệm phân biệt

b) Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1.x_2=m-2\end{matrix}\right.\)⇔ \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\2x_1.x_2=2m-4\end{matrix}\right.\)

=> x1 + x2 - 2x1x2 = 2m + 2 - 2m + 4 => x1 + x2 - 2x1x2 = 6