\(x^2+2\left(m-1\right).\left|x\right|+m+1=0\)

Tìm m để phương trì...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

a) PT có nghiệm kép nếu

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)

Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép

\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)

b) Để pt có nghiệm phân biệt đều âm thì

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)

\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)

Vậy 0<m<\(\frac{1}{2}\)

19 tháng 5 2020

định gõ ấn f5 cái thì thấy bạn làm xong r :(( 

giải nhanh quá ! 

9 tháng 3 2019

Ta có : \(\Delta=9-4m^2-4=5-4m^2\)

Pt ban đầu có nghiệm khi \(\Delta=5-4m^2\ge0\)

                                        \(\Leftrightarrow m^2\le\frac{5}{4}\)

                                        \(\Leftrightarrow-\frac{\sqrt{5}}{2}\le m\le\frac{\sqrt{5}}{2}\)

Theo hệ thức Vi-ét có \(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=m^2+1\end{cases}}\)

Vì tổng và tích đều dương nên 2 nghiệm đều dương

Ta có:  \(\left|x_1\right|+\left|x_2\right|=3\)

\(\Leftrightarrow x_1+x_2=3\)(Luôn đúng theo Vi-ét)

Vậy \(-\frac{\sqrt{5}}{2}\le m\le\frac{\sqrt{5}}{2}\)

17 tháng 4 2019

dầu tiên bn tìm đenta phẩy

sau đó cm nó lớn hơn 0

theo hệ thức viet tính đc x1+x2=... và x1*x2=....

thay vào hệ thức đã cho tính đc ..