K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

\(x^2-\left(2m+1\right)x+m^2+m+1=0\)

2 nghiệm phân biệt khi

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m+1\right)=0\)

=>\(\Delta=4m^2+4m+1-4m^2-4m-4=0\)

=>\(\Delta=-3< 0\)

b)\(\orbr{\begin{cases}x_1=\frac{2m+1-3}{2}=\frac{2m+1}{2}-\frac{3}{2}\\x_2=\frac{2m+1+3}{2}=\frac{2m+1}{2}+\frac{3}{2}\end{cases}}\)

\(x_1-x_2=-3\)

4 tháng 3 2022

a, Thay m = 1 ta đc

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm pb khi delta' > 0 

\(m-2\ne0\Leftrightarrow m\ne2\)

c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)

NV
4 tháng 3 2022

d. 

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

19 tháng 3 2022

a= 1; b'= -(m+1); c=2m

1. Δ'>0

Theo Hệ thức Viet ta có: S=...= 2(m+1) và P= 2m

2. Để PT có 2 nghiệm cùng dương 

\(\left\{{}\begin{matrix}S=2\left(m+1\right)>0\Leftrightarrow m>-1\\P=2m>0\Leftrightarrow m>0\end{matrix}\right.\Rightarrow m>0\)

Vậy với m>0 thì PT có 2 nghiệm cùng dương

3.  Từ Viets: 

S= 2(m+1)= 2m+2 

P= 2m

Suy ra: S-P=2m+2-2m=2

hay x1+x2-x1.x2-2=0

3 tháng 4 2023

\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)

a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)

⇒ Phương trình có hai nghiệm phân biệt 

b, Để phương trình có hai nghiệm cùng dương thì : 

\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)

c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)

Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)

Kết luận ....