\(x^2-2x-2m-1=0\) (1) (với x là ẩn, m là tham số). Tìm các giá trị của m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

10 tháng 5 2017

Ta có \(\Delta\)'= \(\left(-m\right)^2-2m+2=\left(m-1\right)^2+1>0\veebar m\)

Vậy với mọi giá trị của m thì phương trình đã cho luôn có 2 nghiệm phân biệt

Theo hệ thức Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)

Thay giá trị của \(x_1+x_2\)\(x_1.x_2\) vào biểu thức A ta được :

\(A=\dfrac{6.\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)}=\dfrac{12m}{4m^2+4m+4}\)

\(A=\dfrac{3m}{m^2+m+1}\)

Cm: \(3m\le m^2+m+1\)

\(\Leftrightarrow\left(m-1\right)^2\ge0\) (luôn đúng ) (dấu = xảy ra khi x=1)

Do đó \(3m\le m^2+m+1\) khi đó ta được:

\(A=\dfrac{3m}{m+m+1}\le1\)

Vậy với GTLN của A = 1 khi và chỉ khi m=1

10 tháng 5 2017

mình gõ nhầm dấu = xảy ra khi m=1 chứ không phải x=1

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.

AH
Akai Haruma
Giáo viên
16 tháng 3 2018

Lời giải:

Để pt có hai nghiệm phân biệt thì \(\Delta'=1+2m>0\Leftrightarrow m> \frac{-1}{2}\)

a)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt:

\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-2m\end{matrix}\right.\)

Khi đó: \((x_1^2+1)(x_2^2+1)=5\)

\(\Leftrightarrow (x_1x_2)^2+x_1^2+x_2^2=4\)

\(\Leftrightarrow (x_1x_2)^2+(x_1+x_2)^2-2x_1x_2=4\)

\(\Leftrightarrow 4m^2+4+4m=4\)

\(\Leftrightarrow m(m+1)=0\Rightarrow m=0\) do \(m> \frac{-1}{2}\)

b)

Ta có:

\(u=\frac{1}{x_1+1}+\frac{1}{x_2+1}=\frac{x_1+x_2+2}{(x_1+1)(x_2+1)}\)

\(=\frac{x_1+x_2+2}{x_1x_2+(x_1+x_2)+1}=\frac{2+2}{-2m+2+1}=\frac{4}{3-2m}\)

\(v=\frac{1}{x_1+1}.\frac{1}{x_2+1}=\frac{1}{(x_1+1)(x_2+1)}=\frac{1}{x_1+x_2+x_1x_2+1}=\frac{1}{2-2m+1}=\frac{1}{3-2m}\)

Do đó pt nhận \(\frac{1}{x_1+1}; \frac{1}{x_2+1}\) làm nghiệm theo định lý Viete đảo là:

\(X^2-\frac{4}{3-2m}X+\frac{1}{3-2m}=0\)

\(\Leftrightarrow (3-2m)X^2-4X+1=0\)

17 tháng 3 2018

f(x) =x^2 -2x -2m

a) f(x) có hai nghiệm pb <=> 1 +2m > 0 => m>-1/2

P=\(\left(x_1^2+1\right)\left(x_2^2+1\right)=\left(x_1.x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1\)

\(P=\left(x_1x_2-1\right)^2+\left(x_1+x_2\right)^2=\left(2m+1\right)^2+4\)

\(P=5\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}2m+1=-1;m=-1\left(l\right)\\2m+1=1;m=0\left(n\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}m\ge\dfrac{1}{2}\\1+2-2m\ne0\end{matrix}\right.\) <=> \(m\in[\dfrac{-1}{2};\dfrac{3}{2})U\left(\dfrac{3}{2};\infty\right)\)

\(\left\{{}\begin{matrix}\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}=\dfrac{4}{3-2m}\\\dfrac{1}{x_1+1}.\dfrac{1}{x_2+1}=\dfrac{1}{3-2m}\end{matrix}\right.\)

phương trình cần tìm

\(g\left(x\right)=x^2-\dfrac{4}{3-2m}+\dfrac{1}{3-2m}\) \(\Leftrightarrow\left\{{}\begin{matrix}m\in[\dfrac{-1}{2};\dfrac{3}{2})U\left(\dfrac{3}{2};\infty\right)\\\left(2m-3\right)x^2+4x-1=0\end{matrix}\right.\)