\(x^2-2\left(m-4\right)x=m^2-8=0\) có hai nghiện x1,x2 <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

    (x2-3x+2)(x2-9x+20)=4

=>(x-1)(x-2)(x-4)(x-5)=4

Đặt x-3=a , phương trình tương đương:

    (a+2)(a+1)(a-1)(a-2)=4

=>(a2-1)(a2-4)=4

=>a4-5a2=0

Tự giải nốt nhé!

26 tháng 7 2016

a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.

a: Để PT có hai nghiệm trái dấu thì 2m-4<0

=>m<2

b: Khi x=1 thì PT sẽ là \(1+4+2m-4=0\)

=>m=-1/2

\(x_1+x_2=-4\)

=>x2=-4-1=-5

c: \(\text{Δ}=4^2-4\left(2m-4\right)=16-8m+16=-8m+32\)

ĐểPT có 2 nghiệm thì -8m+32>=0

=>-8m>=-32

=>m<=4

\(x_1^2+x_2^2=10\)

=>(x1+x2)^2-2x1x2=10

\(\Leftrightarrow\left(-4\right)^2-2\left(2m-4\right)=10\)

=>16-4m+8=10

=>24-4m=10

=>4m=14

=>m=7/2

NV
27 tháng 10 2019

\(\Delta'=\left(m-1\right)^2-m^2+3m=m+1\ge0\Rightarrow m\ge-1\)

Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-8=0\)

\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

14 tháng 11 2018

△=[-2(1-m)]2-4(m2+3)

=4-8m+4m2-4m2-12

=-8-8m

De phuong trinh co 2 nghiem x1,x2 thì :△>=0

=>-8-8m≥0 =>m≤-1

Theo Viet {x1+x2=2-2m ;x1x2=m2+3

=> A=2(2-2m)-m2-3

=4-4m-m2-3

=-m2-4m+1 =-(m2+4m-1)

=-[(m+2)2-5] =-(m+2)2+5

Vì (m+2)2≥0∀m =>-(m+2)2≤0

=>-(m+2)2+5≤5

Vậy GTLN của A là 5 khi m=-2