Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)\(x^2\sqrt[4]{2-x^4}=x^4-x^3+1\)
\(pt\Leftrightarrow x^2\sqrt[4]{2-x^4}-1=x^4-x^3\)
\(\Leftrightarrow\frac{x^8\left(2-x^4\right)-1}{\sqrt[4]{\left(x^2\sqrt[4]{2-x^2}\right)^3}+\sqrt[4]{\left(x^2\sqrt[4]{2-x^2}\right)^2}+\sqrt[4]{x^2\sqrt[4]{2-x^2}}+1}=x^4-x^3\)
\(\Leftrightarrow\frac{-\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^8-x^4-1\right)}{\sqrt[4]{\left(x^2\sqrt[4]{2-x^2}\right)^3}+\sqrt[4]{\left(x^2\sqrt[4]{2-x^2}\right)^2}+\sqrt[4]{x^2\sqrt[4]{2-x^2}}+1}-x^3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{-\left(x+1\right)\left(x^2+1\right)\left(x^8-x^4-1\right)}{\sqrt[4]{\left(x^2\sqrt[4]{2-x^2}\right)^3}+\sqrt[4]{\left(x^2\sqrt[4]{2-x^2}\right)^2}+\sqrt[4]{x^2\sqrt[4]{2-x^2}}+1}-x^3\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4\left(4m-4\right)=m^2+6m+9-16m+16=\left(m-5\right)^2\ge0\)
=> pt luôn có 2 nghiệm x1, x2
=> \(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{m+3-m+5}{2}=4\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{m+3+m-5}{2}=m-1\)
Theo bài ra, ta có: \(\sqrt{x_1}+\sqrt{x_2}+x_1x_2=20\)
ĐK: \(x_1\ge0\); \(x_2\ge0\) <=> 4 \(\ge\) 0 và m - 1 \(\ge\)0 <=> m \(\ge\)1
<=> \(\sqrt{4}+\sqrt{m-1}+4\left(m-1\right)=20\)
<=> \(\sqrt{m-1}=22-4m\left(m\le\frac{11}{2}\right)\)
<=> \(m-1=16m^2-176m+484\)
<=> \(16m^2-177m+485=0\)
<=> \(16m^2-80m-97m+485=0\)
<=> \(\left(m-5\right)\left(16m-97\right)=0\)
<=> \(\orbr{\begin{cases}m=5\left(tm\right)\\m=\frac{97}{16}\left(ktm\right)\end{cases}}\)
Vậy ...
với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104
với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4
\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2
b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0
\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0
\Rightarrow ∫m<8m>−2∫m>−2m<8
\Rightarrow -2<m<8
\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}
c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2
hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5
\Leftrightarrow m+2 = 1 ; 5
m+2 = 1 \Rightarrow m = -1
m+2 = 5 \Rightarrow m =3
Câu a. Giả sử có m thỏa mãn đề bài, khi đó sẽ có số \(a\ge0\)để \(\sqrt{1-x^2}=a\)hay \(1-x^2=a^2\)
Suy ra: \(x^2=1-a^2\).
Nếu a > 1 thì không có x thỏa mãn.
Nếu a = 1 thì x = 0 ( duy nhất).
Nếu \(0\le a< 1\)thì \(x=\sqrt{1-a^2}\)hoặc \(x=-\sqrt{1-a^2}\). Rõ ràng hai giá trị này là phân biệt.
Vậy chỉ khi a = 1 thì x = 0 duy nhất. Khi đó m = 3 .
Ngược lại thay m = 3 vào phương trình ta có: \(\sqrt{1-x^2}+2\sqrt[3]{1-x^2}=3.\)
Đặt \(1-x^2=a^6\), thay vào phương trình ban đầu ta có:
\(a^3+2a^2=3\Leftrightarrow\left(a-1\right)\left(a^2-a+3\right)=0\)
Vậy a = 1 hay \(1-x^2=1\)suy ra x = 0 là nghiệm duy nhất.
Câu b ta đặt: \(\sqrt{x}+\sqrt{1-x}=a\)sau đó bình phương hai vế lên ta được 1 phương trình bậc hai theo tham số a.
Dùng điều kiện \(\Delta=0\)ta sẽ tìm được a.
Cho phương trình: \(2x^2-2\left(2+m\right)x+8-4m=3\sqrt{x^3+8}\)
Xác định m để phương trình có nghiệm
a, Ta có : \(a=1;b=-2m;c=m+2\)
a, Để phương trình có 2 nghiệm ko âm nên : \(\hept{\begin{cases}\Delta\ge0\\S>0\\P>0\end{cases}}\)
hay \(\Delta=\left(-2m\right)^2-4\left(m+2\right)=4m^2-4m-8=\left(2m+1\right)^2-9\)
mà \(\Delta\ge0\Rightarrow\left(2m-1\right)^2-9\ge0\Rightarrow m\ge2\)
\(S>0\)mà \(S=x_1+x_2=-\frac{b}{a}\Rightarrow S=-\frac{b}{a}=2m\Rightarrow2m>0\Rightarrow m>0\)
\(P>0\)mà \(P=x_1x_2=\frac{c}{a}\Rightarrow P=\frac{c}{a}=m+2\Rightarrow m+2>0\Rightarrow m>-2\)
\(\Rightarrow\hept{\begin{cases}\Delta\ge0\\S>0\\P>0\end{cases}}\Rightarrow m\ge2\)Vậy ta có đpcm
b, Theo hệ thức Vi et : \(\hept{\begin{cases}S=-\frac{b}{a}\\P=\frac{c}{a}\end{cases}\Rightarrow\hept{\begin{cases}S=2m\\P=m+2\end{cases}}}\)
Theo bài ra ta có : \(E=\sqrt{x_1}+\sqrt{x_2}\Rightarrow E^2=\left(\sqrt{x_1}+\sqrt{x_2}\right)^2\)
\(=x_1+2\sqrt{x_1x_2}+x_2=\left(x_1+x_2\right)+2\sqrt{x_1x_2}\)
\(\Rightarrow2m+2\sqrt{m+2}=2m+\sqrt{4m+8}\)
\(\Rightarrow E=\sqrt{2m+\sqrt{4m+8}}\)