Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tại m = -2 thì PT trở thành:
\(x^2-2\left(-2-1\right)x+\left(-2\right)^2-1=0\)
\(\Leftrightarrow x^2+6x+3=0\)
\(\Delta^'=3^2-1\cdot3=6>0\)
Khi đó PT có 2 nghiệm phân biệt
\(x_1=-3+\sqrt{6}\) ; \(x_2=-3-\sqrt{6}\)
b) Theo hệ thức Viète ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\frac{x_1+x_2}{2}+1\right)^2=m^2\\x_1x_2+1=m^2\end{cases}}\)
\(\Rightarrow\left(\frac{x_1+x_2}{2}+1\right)^2=x_1x_2+1\) là hệ thức liên hệ
lazy à cái phần ta có mình chưa hiểu lắm. bạn giúp mình duocj ko?
Ta có : \(mx^2-2\left(m+2\right)x+m+7=0\left(a=m;b=-2m-4;c=m+7\right)\)
Để phương trình có 2 nghiệm phân biệt ta có : \(\Delta>0\)hay
\(\left(-2m-4\right)^2-4m\left(m+7\right)=-12m+16>0\)
\(\Leftrightarrow-12m+16>0\Leftrightarrow-12m>16\Leftrightarrow m>-\frac{4}{3}\)
Theo Vi et : \(x_1+x_2=\frac{2m+4}{m};x_1x_2=\frac{m+7}{m}\)
\(\Leftrightarrow m\left(x_1+x_2\right)=2m+4\)(*)
Mà \(x_1x_2=\frac{m+7}{m}\Leftrightarrow m=\frac{7}{x_1x_2-1}\)(**)
Thay vào pt (*) ta có : \(\frac{7}{x_1x_2-1}\left(x_1+x_2\right)=2.\frac{7}{x_1x_2-1}+4\)
lo hbfbekef evef
frgrgthtgr
t
gr
grgrgrgfrgrf
r
g
rg
r
g
r
gr
f
r
r
br
g
r
gr
gr
grg
r
g
eh
h
h
t
tt
t
t
thr
htr
htht
rh
ththt
ht
ht
h
h
ht
ht
ht
h
frorgew
rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f
v
r
re
eb
tg
bet
eb
b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)
\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt (1) có 2 nghiệm x1,x2 với mọi m
Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
<=>\(4m^2-8m+4+2m+6=10\)
<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)
<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)
c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)
Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)
<=>\(2x_1x_2+x_1+x_2=-8\)
a)\(\Delta\)=(2m+3)^2-4.(m^2-1)
=12m+13
=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)
Hay 12m+13>_0
<=>m>_-13/12
b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có
1^2-(2m+3)1+m^2-1=0
<=>m^2-2m-3=0
<=>m=-1 hoặc m=3
Áp dụng hệ thức Vi-ét ta có
x1.x2=m^2-1
=>x2=m^2-1
+)m=-1=>x2=0
+)m=3=>x2=8
c)Theo câu a ta có
Phương trình có 2 nghiệm phân biệt<=>m>_-13/12
Áp dụng hệ thức Vi-ét ta có
x1+x2=2m+3 và x1.x2=m^2-1 (1)
Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2
Thay (1) vào A ta có
A=(2m+3)^2-2(m^2-1)
=4m^2+12m+11
=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2
Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2
d)Câu này dễ b tự lm nha
a, Để phương trình có 2 nghiệm \(x_1,x_2\)thì \(\Delta=\left(m-1\right)^2-\left(2m-4\right)=m^2-4m+5>0\)
Dễ thấy \(\Delta\ge1\forall m\)nên phương trình luôn có 2 nghiệm phân biệt
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-4\end{cases}}\)
\(\left|x_1-x_2\right|=4\Rightarrow\left(x_1-x_2\right)^2=16\Rightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)
\(\Rightarrow4\left(m^2-2m+1\right)-4\left(2m-4\right)=16\)\(\Rightarrow m^2+2m-1=0\Rightarrow\orbr{\begin{cases}m=-1+\sqrt{2}\\m=-1-\sqrt{2}\end{cases}}\)
b. Ta có \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-4\end{cases}\Rightarrow x_1+x_2-x_1.x_2}=2\)
\(x^2+\left(m-1\right)x+m-2=0\left(1\right)\)
a, Với m = -2
\(\left(1\right)\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)
b, \(\Delta=\left(m-1\right)^2-4\left(m-2\right)=m^2-2m+1-4m+8=m^2-6m+9=\left(m-3\right)^2\ge0\)
Vậy phương trình luôn có 2 nghiệm với mọi m.
c, Theo vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=1-m\\x_1.x_2=m-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=1-x_1-x_2\\m=x_1x_2+2\end{cases}}\)
\(\Leftrightarrow1-x_1-x_2=x_1x_2+2\Leftrightarrow x_1+x_2+x_1x_2=-1\)
Đây là hệ thức cần tìm.