K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

lo hbfbekef evef

frgrgthtgr

t

gr

grgrgrgfrgrf

r

g

rg

r

g

r

gr

f

r

r

br

g

r

gr

gr

grg

r

g

eh

h

h

t

tt

t

t

thr

htr

htht

rh

ththt

ht

ht

h

h

ht

ht

ht

h

frorgew

rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f

v

r

re

eb

tg

bet

eb

1 tháng 6 2020

\(\sqrt[]{}\)

15 tháng 5 2020

a) PT có 2 nghiệm dương

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\P>0\\S>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m+3\right)^2-\left(4m-1\right)\ge0\\4m-1>0\\2\left(m+3\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+2m+10\ge0\\m>\frac{1}{4}\\m>-3\end{cases}}}\)

\(\Leftrightarrow m>\frac{1}{4}\)

b) vì \(\Delta'>0\)nên PT đã cho luôn có hai nghiệm x1,x2 với mọi m.

Áp dụng hệ thức Vi-et,ta có :

\(\hept{\begin{cases}S=2\left(m+3\right)\\P=4m-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2S=4m+12\\P=4m-1\end{cases}}\)

\(\Leftrightarrow2S-P=13\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2=13\)

9 tháng 5 2019

a) phương trình (1) có a=m-1 b'=b/2 = -m-1 c=m

 \(\Delta=b'^2-ac=\left(-m-1\right)^2-\left(m-1\right)\cdot m\)
\(=m^2+2m+1-m^2+m=3m+1\)
Phương trình có hai nghiệm <=> \(\Delta\ge0\Leftrightarrow3m+1\ge0\Leftrightarrow m\ge-\frac{1}{3}\)

b) Khi phương trình có hai nghiệm x1, x2, theo hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{m-1}=2+\frac{4}{m-1}\\x_1\cdot x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-4x_1\cdot x_2=-2\)

9 tháng 5 2019

Sửa delta thành delta' nha, lúc nãy quên

9 tháng 5 2015

a, Với m=2 thì phương trình (1) trở thành
       x mũ 2 + 2(2+2)x +4.2 -1 =0
<=> x mũ 2 + 8x +7 =0
<=> x mũ 2 + x + 7x +7 =0
<=> (x+1)(x+7) =0
<=> x= -1 hoặc x= -7
b, Ta có:
penta' = (m+2)mũ2 - 4m -1
         = m m 2 +4m +4 -4m -1 
         = m mũ2 +3 

vì m mũ2 luôn > hoặc = 0 với mọi m

suy ra m mũ2 +3 luôn >0 với mọi m

 suy ra penta' >0 hay có hai nghiệm phân biệt (đpcm)

CÒN PHẦN SAU THÌ MK KO BIẾT LÀM .... THÔNG CẢM

 

4 tháng 6 2017
  1. \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
  2. Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
  3. từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
  4. \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-5\right)\)

=4m^2-8m+4-4m+20

=4m^2-12m+24

=(2m-3)^2+15>0

=>Phương trình luôn có nghiệm

b: x1+x2=2m-2; x1x2=m-5

x1+x2=2m-2; 2x1x2=2m-10

=>x1+x2-2x1x2=2m-2-2m+10=8 là hệ thức ko phụ thuộc vào m

12 tháng 2 2023

Ty