K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

a,Với k =0 thì biểu thức bằng:​

4x3-25=0 hay 4x3 = 25 nên x=\(\sqrt[3]{\frac{25}{4}}\)

b,Với k =(-3) thì biểu thức bằng:\(4x^3-25+9-12x=0\)

hay :\(4x^3-12x=16\)

\(4x\left(x^2-3\right)=16\)

\(x^2-3=\frac{4}{x}\) nên suy ra \(\left(x^2-3\right):\frac{4}{x}=1\)

hay \(x^3-3x=4\)

nên nếu với x là một số tự nhiên thì phương trình vô nghiệm

21 tháng 6 2017

khó quá nhỉ

25 tháng 4 2017

a) Thay k = 0 vào ta có pt: 9x- 25 = 0 nên x = 5/3 hoặc x = -5/3

b) Để pt nhận x = -1 làm nghiệm thì: 9 - 25 - k+ 2k = 0 tương đương - k+ 2k - 16 =0

Mặt khác - k+ 2k - 16 = - ( k2 - 2k + 16) = -[(k - 1)+ 15] < 0 

Suy ra không có giá trị nào của k thỏa mãn yêu cầu bài toán

21 tháng 2 2020

a,Thay k=4 vào pt (1) ta đc

x2+4*4x-17=0

<=>x2+16x-17=0

<=>x2-x+17x-17=0

<=>(x2-x)+(17x-17)=0

<=>x(x-1)+17(x-1)=0

<=>(x+17)(x-1)=0

<=>x+17=0 hoặc x-1=0

*x+17=0             *x-1=0

<=>x=-17           <=>x=1

vậy k=4 thì pt có tập nghiệm S={-17;1}

2 ý sau cũng thay và làm 

11 tháng 3 2017

Bài 2: a,b thế số vào rồi giải

c) x = -2 là nghiệm của pt

=> 4.(-2)^2 - 25 + k^2 + 4k.(-2) = 0

Từ đó giải ra tìm k và kết luận.

11 tháng 3 2017

bn có thể giải cụ thể giúp mink đc ko ạ?

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

14 tháng 4 2020

k=0 => \(9x^2-25=0\)

\(\Leftrightarrow x^2=\frac{25}{9}\Leftrightarrow x=\pm\frac{5}{3}\)

x=-1 => 9-25-k2=2k=0

=> k2-2k+16=0

=> không có giá trị k thỏa mãn

11 tháng 3 2020

Thay x =-2 vào phương trình :

\(4.\left(-2\right)^2-25+k^2+4k.\left(-2\right)=0\)

\(\Leftrightarrow16-25+k^2-8k=0\)

\(\Leftrightarrow k^2-8k-9=0\)

\(\Leftrightarrow\left(k-9\right)\left(k+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}k-9=0\\k+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}k=9\\k=-1\end{cases}}\)

Vậy để phương trình nhận x =-2 làm nghiệm \(\Leftrightarrow k\in\left\{9;-1\right\}\)

\(\)