Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x-12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=-4\end{cases}.}\)
A không xác định khi mẫu bằng 0=>\(x^2+x-12=0\Leftrightarrow x^2+4x-3x-12=0\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=3\end{cases}}\)
Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x-12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)
Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x+12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)
Vậy \(x=3;-4\)
Ta thấy: Phân thức A không xác định được khi mẫu số của phân thức bằng 0, tức là:
\(x^2-x-56=0\\ \Rightarrow x\left(x-1\right)=8\cdot7=-7\cdot-8\\ \Rightarrow x=8;-7\)
Vậy tập hợp các giá trị của x để phân thức A không xác định là {8; -7}
a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
b) Để phân thức bằng 1 thì :
\(5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy.......
Phân thức xác định
\(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định
Đặt \(\frac{5x+5}{2x^2+2x}=A\)
a/ Để A xác định\(\Leftrightarrow2x^2+2x\ne0\Leftrightarrow2x\left(x+1\right)\ne0\Rightarrow x\ne0;x\ne-1\)
TXĐ:\(x\ne0;x\ne-1\)
b/ Với \(x\ne0;x\ne-1\)ta có \(A=\frac{5x+5}{2x^2+2x}\)
Để A=1\(\Leftrightarrow5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Rightarrow x=\frac{2}{5}\)( TM )
\(a,\frac{5x+5}{2x^2+2x}=\frac{5x+5}{2x\left(x+1\right)}\)XÁc định
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}2x\ne0\\x+1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
\(\frac{3x^2+6x^2\left(xemlai\right)6x^2hay\left(6x\right)}{x^3+2x^2+x+2}=\frac{9x^2\left(culamtheode\right)}{x^3\left(x+2\right)+x+2=9}=\frac{9x^2}{\left(x^3+1\right)\left(x+2\right)}=\frac{9x^2}{\left(x+1\right)\left(x+2\right)\left(x^2-x+1\right)}\)
a)
\(x+1\ne0;x+2\ne0;x^2-x+1\ne0\)
\(x\ne-1;-2\)
b) khi 1<x<2 gia tri phan thuc <0 (-) xem lai
a)Đk:\(2x^2+2x\ne0\Rightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x\ne0\\x\ne-1\end{array}\right.\) thì phân thức xác định
b)\(\frac{5x+5}{2x^2+2x}=\frac{5\left(x+1\right)}{2x\left(x+1\right)}=\frac{5}{2x}\). Giá trị phân thức =1
\(\Rightarrow\frac{5}{2x}=1\Rightarrow5=2x\Rightarrow x=\frac{5}{2}\)
Ta thấy: Phân thức A không xác định được khi mẫu số của phân thức bằng 0, tức là:
\(x^2-x-56=0\)
\(\Rightarrow x\left(x-1\right)=8\cdot7=-7\cdot-8\)
\(\Rightarrow x=8;-7\)
Vậy tập hợp các giá trị của x để phân thức A không xác định là { 8 ; -7 }