Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nhân giá trị số nguyên thì
\(\Leftrightarrow6⋮2n-1\)
Vì n\(\in Z\Rightarrow2n-1\in Z\)
\(\Rightarrow2n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Vì 2n-1 là số lẻ
\(\Rightarrow2n-1\in\left\{\pm1;\pm3\right\}\)
Ta có bảng giá trị
2n-1 | -1 | 1 | -3 | 3 |
2n | 0 | 2 | -2 | 4 |
n | 0 | 1 | -1 | 2 |
Đối chiếu điều kiện n\(\in Z\)
Vậy n={0;1;-1;2}
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a
Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
b
A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)
\(\Rightarrow\frac{5}{2n-1}\inℤ\)
\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)
c
\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)
Ta có :
\(A=\frac{2n+3}{2n-3}=\frac{2n-3+6}{2n-3}=1+\frac{6}{2n-3}\)
để A \(\in\)Z \(\Leftrightarrow\)\(1+\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)2n - 3 \(\in\)Ư ( 6 ) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 2 | 1 | 5/2 | 1/2 | 3 | 0 | 9/2 | -3/2 |
vì n \(\in\)Z nên n = { 2 ; 1 ; 3 ; 0 }
Ta có : \(A=\frac{2n+3}{2n-3}=\frac{\left(2n-3\right)+6}{2n-3}=1+\frac{6}{2n-3}\)
Để \(A\in N\) thì \(\frac{6}{2n-3}\in N\)
\(\Rightarrow6⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
n | 2 | 1 | 2,5 | 0,5 | 3 | 0 | 4,5 | -1,5 |
Vậy ...
Để B là một số nguyên
\(\Leftrightarrow6⋮\left(2n+1\right)\)
\(\Rightarrow2n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Mà n là số nguyên
\(\Rightarrow n\in\left\{-1;-2;0;1\right\}\)
Vậy..
P/s: Hoq chắc :<
B là số nguyên nếu : \(6⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow2n=\left\{-2;-3;-4;-7;0;1;2;5\right\}\)
\(\Rightarrow n=\left\{-1;-2;0;1\right\}\)
Vậy để B là số nguyên thì \(n=\left\{-1;-2;0;1\right\}\)