Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=\frac{3.\left(n+4\right)-17}{n+4}=\frac{3.\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\)
Để A nguyên thì \(\frac{17}{n+4}\)nguyên
=> 17 chia hết cho n + 4
=> \(n+4\inƯ\left(17\right)\)
=> \(n+4\in\left\{1;-1;17;-17\right\}\)
=> \(n\in\left\{-3;-5;13;-21\right\}\)
a) n-1-n+3 = 2
n-3 (Ư)2 = -1; 1; -2;2
n= 2; 4; 1 ; 5
b) tuong tu;
n=2;4
\(A=\frac{n-5}{n+1}\)
Để A có giá trị nguyên
=> n-5 chia hết n+1
=> (n+1)-6 chia hết n+1
=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)
Ta có bảng :
n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
Câu b tự làm
a, Để a nguyên thì n-5 chia hết cho n+1
suy ra n-1+6 chia hết cho n-1
Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1
Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}
suy ra n thuộc {2;0;3;-1;4;-2;7;-5}
Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}
b, Gọi d là ước nguyên tố chung của n-5 và n+1
Suy ra n-5 chia hết cho d, n+1 chia hết cho d
Suy ra (n+1)-(n-5) chia hết cho d
suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d
Do d nguyên tố nên d thuộc {2;3}
Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)
Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)
Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản
A=2(n-5)+11/n-5=2+11/n-5
để A là 1 số nguyên thì 11 chia hết cho n-5
hay n-5 thuộc ước của 11
n-5 thuộc 11;-11;1;-1
n thuộc 16;-6;6;4
kl:.....
Muốn A là số nguyên thì 2n + 1 chia hết cho n - 5
Suy ra 2n - 10 + 11 chia hết cho n - 5
Suy ra 2(n - 5) + 11 chia hết cho n - 5
Suy ra 11 chia hết cho n - 5
Suy ra n - 5 là ước của 11
Còn lại bạn làm nốt. Mình ngại làm lắm.