Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+n^2+n+1\)
\(=n^2(n^2-1)(n^4+n^2+1)+n^2+n+1\)
\(=n^2(n^2-1)(n^4+2n^2+1-n^2)+n^2+n+1\)
\(=n^2(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)
Mặt khác :
\(n^7+n^2+1=n^7-n+n^2+n+1\)
\(=(n-1)(n^6-1)+n^2+n+1\)
\(=(n-1)(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)
Vậy chúng đều có ước chung \(n^2+n+1\)và \(n^2+n+1>1\)nên phân số đó không tối giản
Hok tốt :>
1/
a3+b3+c3=2abc
vì a+b+c=0
=> a+b=-c
GTNN của c là -1. với c=1=> a+b=-1=> a=0và b=-1 hoặc a=-1 và b=0
khi đó. A=2.(-1).1.0=0
=> GTNN của A là......
a)Gọi ƯCLN(18n+5;29n+8)=d
Ta có: 18n+5 chia hết cho d
=>29(18n+5) chia hết cho d
522n+145 chia hết cho d
có 29n+8 chia hết cho d
=>18(29n+8) chia hết cho d
522n+144 chia hết cho d
=>522n+145-(522n+144) chia hết cho d
=>1 chia hết cho d hay d=1
=>ƯCLN(18n+5;29n+8)=1
=>đpcm
b)tương tự, bạn tìm bội chung nhỏ nhất rồi chia là ra
Đặt \(A=\frac{n^3-1}{n^5+n+1}\)
\(A=\frac{n^3-1^3}{n^5-n^2+n^2+n+1}\)
\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)
\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)
\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left[n^2\left(n-1\right)+1\right]}\)
\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left(n^3-n^2+1\right)}\)
\(A=\frac{n-1}{n^3-n^2+1}\)
Dễ thấy n - 1 < n3 - 1; n3 - n2 + 1 < n5 + n + 1
Mà \(\frac{n^3-1}{n^5+n+1}=\frac{n-1}{n^3-n^2+1}\)
=> A có thể rút gọn
=> A chưa tối giản ( đpcm )
a/b là phân thức tối giản nên suy ra a ko chia hết cho b
a/a+b ta có a chia hết cho a mak a ko chia hết cho b nên a chia hết cho a+b
suy ra a/a+b là phân thức tối giản
a, Gọi \(d=ƯCLN\left(n+4;n+5\right)\left(d\in N\right)\)
\(\Leftrightarrow\hept{\begin{cases}n+4⋮d\\n+5⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+4;n+5\right)=1\)
Vậy ...
còn phần b T^T