K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Phương trình hoành độ giao điểm của (P) và (d) là: 

\(x^2=x+2\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow x^2-2x+x-2=0\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Thay x=2 vào (P), ta được:

\(y=2^2=4\)

Thay x=-1 vào (P), ta được:

\(y=\left(-1\right)^2=1\)

Vậy: A(2;4) và B(-1;1)

25 tháng 5 2020

giúp mình đi vẽ hộ cái hình

cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn

19 tháng 5 2023

`a)`

`@ O(0;0), A(1;1), B(-1;1) in (P)`

`@ C(0;2), D(-2;0) in (d)`

`b)` Ptr hoành độ của `(P)` và `(d)` là:

     `x^2=x+2`

`<=>x^2-x-2=0`

Ptr có: `a-b+c=1+1-2=0`

   `=>x_1=-1;x_2=-c/a=2`

  `=>y_1=1;y_2=4`

`=>(-1;1), (2;4)` là giao điểm của `(P)` và `(d)`

`c)` Vì `(d') //// (d)=>a=1` và `b ne 2`

Thay `a=1;M(2;5)` vào `(d')` có:

         `5=2+b<=>b=3` (t/m)

  `=>` Ptr đường thẳng `(d'): y=x+3`

Bạn tham khảo hình :

undefinedundefinedundefined

30 tháng 5 2021

a)Tự vẽ

b) Xét pt hoành độ gđ của (P) và (d) có:

\(\dfrac{3}{2}x^2=x+\dfrac{1}{2}\)

\(\Leftrightarrow3x^2-2x-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\Rightarrow y=\dfrac{3}{2}.\left(-\dfrac{1}{3}\right)^2=\dfrac{1}{6}\\x=1\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)

Vậy gđ của (d) và (P) là \(\left(-\dfrac{1}{3};\dfrac{1}{6}\right),\left(1;\dfrac{3}{2}\right)\)

c) Gọi đt cần tìm có dạng (d') \(y=ax+b\) (a2+b2>0)

Gọi A(-4;y1) và B(2;y2) là hai giao điểm của (P) và (d')

\(A;B\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}y_1=24\\y_2=6\end{matrix}\right.\) 

\(\Rightarrow A\left(-4;24\right),B\left(2;6\right)\) \(\in\left(d'\right)\)

\(\Rightarrow\left\{{}\begin{matrix}24=-4a+b\\6=2a+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=12\end{matrix}\right.\) (thỏa)

Vậy (d'): y=-3x+12