K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

1.

P đi qua K( \(\sqrt{2}\);4) =>4=a.4=>a=1Hỏi đáp Toán

6 tháng 4 2017

2. Cho parabol: y=ax2. Với a tìm được ở câu 1 hãy xác định m để đường thẳng (d): y=6x+m cắt (p) tại 2 điểm phân biệt A(x1;y1), B(x2;y2) sao cho y1-y2=42

phương trình hoành độ giao điểm:

x^2 = 6x +m

<=> x^2 -6x -m =0

theo định lí vi-et ta có:

x1+x2=6(1) ;x1x2=-m (*)

y1-y2 = 6(x1 -x2)=42(2)

(1)(2)=>x1=13/2 ; x2=-1/2

thay vào (*) => -m=x1x2=-13/4 =>m=13/4

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

27 tháng 6 2020

a, b, dễ quá bỏ qua .

b, - Xét phương trình hoành độ giao điểm :

\(\frac{1}{2}x^2=\left(m-1\right)x+\frac{1}{2}m^2+m\)

=> \(\frac{1}{2}x^2-\left(m-1\right)x-\frac{1}{2}m^2-m=0\)

=> \(\Delta=b^2-4ac=\left(-\left(m-1\right)\right)^2-\frac{4.1}{2}.\left(-\frac{1}{2}m^2-m\right)\)

=> \(\Delta=m^2-2m+1+m^2+2m=2m^2+1\ge1>0\forall m\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m .

=> ( P ) căt ( d ) tại hai điểm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2+2m\end{matrix}\right.\)

- Để \(x^2_1+x^2_2+6x_1x_2>2019\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2>2019\)

<=> \(\left(2m-2\right)^2+4\left(m^2+2m\right)>2019\)

<=> \(4m^2-8m+4+4m^2+8m>2019\)

<=> \(8m^2>2015\)

<=> \(m^2>\frac{2015}{8}\)

<=> \(\left[{}\begin{matrix}m>\sqrt{\frac{2015}{8}}\\m< -\sqrt{\frac{2015}{8}}\end{matrix}\right.\)

29 tháng 6 2020

Thanks

27 tháng 3 2019

câu a bạn thay x=-1 ,y= 3 vào (d) nha

câu b)

Xét pt hoành độ giao điểm :

\(2x-a+1=\frac{1}{2}x^2\Rightarrow x^2-4x+2a-2=0\)

Bạn tự xét delta để tìm điều kiện nha

Theo hệ thức Vi ét ,ta có:

\(\hept{\begin{cases}x_1+x_2=4\\x_1\cdot x_2=2a-2\end{cases}}\)

\(x_1x_2\left(y_1+y_2\right)+48=0\Rightarrow\frac{1}{2}x_1x_2\left(x_1^2+x_2^2\right)+48=0\)

\(\Rightarrow\frac{1}{2}x_1x_2\left(x_1+x_2\right)^2-2\cdot\frac{1}{2}x_1^2x_2^2+48=0\)

\(\Rightarrow\frac{1}{2}\left(2a-2\right)\cdot4^2-\left(2a-2\right)^2+48=0\)

\(\Rightarrow-4a^2+24a+28=0\)

\(\Rightarrow\orbr{\begin{cases}a=7\\a=-1\end{cases}}\)