K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)

Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)

Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)

Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.

\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)

\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)

\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)

Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)

15 tháng 11 2018

Đáp án B

NV
13 tháng 4 2020

Phương trình hoành độ giao điểm:

\(x^2-2\left(m-1\right)x+2m-5=0\) (1)

\(\Delta'=\left(m-1\right)^2-2m+5=\left(m-2\right)^2+2>0;\forall m\)

\(\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb có hoành độ là nghiệm của (1)

Theo hệ thức Viet \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

Theo định lý Pitago:

\(x_1^2+x_2^2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4\left(m-1\right)^2-2\left(2m-5\right)=14\)

\(\Leftrightarrow4m^2-12m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)

14 tháng 4 2020

Mình cảm ơn rất nhiều.

30 tháng 5 2021

a) Xét pt hoành độ gđ của (d) và (P):

\(x^2-mx+m-1=0\) (*)

Thay m=4 vào pt (*) => x=3 và x=1 thay vào (P) suy ra được tung độ tương ứng y=9 và y=1

Đ/a: \(\left(3;9\right),\left(1;1\right)\)

b) Để (d) và (P) cắt nhau tại hai điểm pb <=> \(\Delta>0\) <=> \(m^2-4\left(m-1\right)>0\) <=> \(\left(m-2\right)^2>0\) <=> \(m\ne2\)

Theo giả thiết => \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{1}{\left(\dfrac{1}{\sqrt{5}}\right)^2}\)  (Áp dụng hệ thức lượng trong tam giác vuông)

\(\Leftrightarrow\dfrac{x^2_1+x_2^2}{x_1^2.x_2^2}=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5\left(x_1x_2\right)^2=0\)

\(\Leftrightarrow m^2-2\left(m-1\right)-5\left(m-1\right)^2=0\)

\(\Leftrightarrow-4m^2+8m-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

8 tháng 3 2016

gọi 2 nghiệm của pt là x1;x2

vì cạnh góc vuông = căn 34 =>tổng bình phương 2 cạnh góc vuông là x12+x22=34 (*)

tìm ra đen ta rôi tim nghiệm theo m thay  vô (*) rồi giải pt là ra m thỏa mãn điều kiện

9 tháng 3 2016

cậu còn cách khác không chứ , tớ đã tính làm cách đó rồi nhưng không khả quan lắm đâu - vì số wá to

11 tháng 4 2017

GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA

(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m

(2) x1^2 +x^2 =12

=> 4(m+1)^2 -4m =12

m^2+m+1=3 => m=1, -2

=> m

(3) từ  (2)  GTNN A=3/4 khi x=-1/2

có thể sai đừng tin