K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

đề sai vì nếu p = 2, p+7 = 9 ko phải số nguyên tố

nếu p là số nguyên tố > 2 => p lẻ => p+7 là số chẵn > 2

nên p và p+7 ko thể cùng là số nguyên tố

18 tháng 4 2017

nếu p=3k+1 thì 2p+103=2( 3k+1)+103=6k+2+103=6k+105chia hết cho3 nên 2p+103 là hợp số

nếu p=3k+2 thì p+7=3k+2+7=3k+9 chia hết cho 3 mà theo đề bài p+7 là số nguyên tố nên p khác 3k+2

vậy 2p+103 là hợp số nếu p và p+7 là số nguyên tố

23 tháng 10 2016

hợp tố

23 tháng 10 2016

là hợp số 

lấy ví dụ p = 11 thì :

2 . 11 + 1 = 23 ( số nguyên tố )

4 . 11 + 1 = 45 ( hợp số )

đ/s : hợp số

27 tháng 1 2017

vì p là số nguyên tố lớn hơn 3 => p có 2 dạng: p = 3k + 1 hoặc p = 3k +2 ( k \(\in\)N* )

- nếu p = 3k + 1 => 2p + 1 = 2 ( 3k+1 ) + 1

                                       = 6k + 2 +1

                                      = 6k + 3 \(⋮\)3 và lớn hơn 3

                       => 2p+1 là hợp số ( loại, vì trái với đề bài )

do đo: p = 3k + 2

=> 4p + 1 = 4 ( 3k + 2 ) + 1

              = 12k + 8 +1

             = 12k + 9 \(⋮\)3 và lớn hơn 3.

=> 4p+1 là hợp số.

vậy: 4p+1 là hợp số. 

SANG NĂM MỚI MK CHÚC CÁC BẠN VUI VẺ. tk mk nha. đúng 100%.

27 tháng 1 2017

hợp số

22 tháng 10 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

22 tháng 10 2016

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số  b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

22 tháng 10 2016

a)

p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

22 tháng 10 2016

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số 

b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số

c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

a )

* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

nhé !

.........

còn câu b ,c chưa nghĩ ra

6 tháng 6 2020

Vì p là số nguyên tố lớn hơn 3 

=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))

Thay p=3k+1 vào 2p+1 ta có:

2p+1=2(3k+1)+1=6k+2+1=6k+3

Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)

=> 2p+1 là hợp số (loại)

Thay p=3k+2 vào 2p+1 ta có: 

2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)

Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số

Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số

26 tháng 12 2015

 Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 
TH1 : p chia cho 3 dư 1 
=> p = 3k + 1 ( k thuộc N*) 
=> 2p + 1 = 6k + 3 chia hết cho 3 
=> 2p + 1 không phải số nguyên tố 
=> loại 
TH2 : p chia 3 dư 2 
=> p = 3k + 2 (k thuộc N*) 
=> 4p + 1 = 12k + 9 chia hết cho 3 
=> 4p + 1 là hợp số 

8 tháng 11 2015

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì $$ chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó $$ chia hết cho 3.

Vậy 4p+1 là hợp số,