Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
Giải bài tổng quát sau: cho p là tích n số nguyên tố đầu tiên, CM p-1 và p+1 không là số chính phương
Giải:
Do p là tích của n số nguyên tố đầu tiên nên p không chia hết cho 4 => p có dạng: 4k+1, 4k+2, 4k+3
Nếu p=4k+1 => p+1 chia 4 dư 2=> không chính phương do số chính phương chia 4 dư 0 hoặc 1
Nếu p=4k+2 => p+1 chia 4 dư 3, => không chính phương
Nếu p=4k+3 => p-1 chia 4 dư 2 => không chính phương
Giả sử p-1 không là số chính phương
Vì p là tích 2016 số nguyên tố đầu , trong đó có chứa thừa số 3
=> p chia hết cho 3
=> p-1 có dạng 3k - 1 , p+1=3k+1 (k thuộc N)
nhưng 3k+1 , 3k-1 ko có dạng là số chính phương
=> điều giả sử là sai
=> p-1 , p+1 ko là số chính phương
Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và không chia hết cho 4
Ta chứng minh p + 1 là số chính phương
Giả sử p + 1 là số chính phương. Đặt p + 1 = m2
Vì p chẵn nên p + 1 lẻ => m lẻ => m2 lẻ
Đặt m = 2k + 1. Ta có : m2 = 4k2 + 4k + 1 => p + 1 = 4k2 + 4k + 1 => p = 4k2 + 4k = 4k(k+1) chia hết cho 4
Ta chứng minh p – 1 là số chính phương
Ta có: p = 2.3.5…. chia hết cho 3 => p -1 = 3k + 2
Vì không có số chính phương nào có dạng 3k + 2 nên p – 1 không phải số chính phương
Vậy nếu p là tích 2016 số nguyên tố đầu tiên thì p + 1 và p – 1 không phải số chính phương
nhận xét:số chính phương khi chia cho 3 hay 4 đều có số dư là 0 hoặc 1
Ta có:\(P=2\cdot3\cdot5\cdot....\)
Do p chia hết cho 3 nên p-1 chia 3 dư 2.theo nhận xét suy ra p-1 không phải là số chính phương(1)
dễ thấy p không chia hết cho 4 và p chia hết cho 2 nên p chia 4 dư 2 suy ra p+1 chia 4 dư 3.theo nhận xét suy ra p+1 không là số chính phương
TỪ(1),(2) suy ra điều cần chứng minh
Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 ﴾*﴿ Ta chứng minh p+1 là số chính phương: Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² ﴾m∈N﴿ Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. Đặt m = 2k+1 ﴾k∈N﴿. Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k﴾k+1﴿ chia hết cho 4. Mâu thuẫn với ﴾*﴿ Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương Ta chứng minh p‐1 là số chính phương: Ta có: p = 2.3.5… là số chia hết cho 3 => p‐1 có dạng 3k+2. Vì không có số chính phương nào có dạng 3k+2 nên p‐1 không là số chính phương . Vậy nếu p là tích n số nguyên tố đầu tiên thì p‐1 và p+1 không là số chính phương ﴾đpcm﴿
láo lớp 6 làm gì đã học số chính phương
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP