K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2021

Do p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 hoặc 3k + 2 \((k\in\mathbb{N})\).

+) Nếu p = 3k + 1 thì 2p + 1 = 2(3k + 1) + 1 = 6k + 3 = 3(2k + 1) chia hết cho 3. Mà 2p + 1 > 3 nên 2p + 1 là hợp số (vô lí).

+) Nếu p = 3k + 2 thì 4p + 1 = 4(3k + 2) + 1 = 12k + 9 = 3(4k + 3) chia hết cho 3. Mà 4p + 1 > 3 nên 4p + 1 là hợp số.

Vậy 4p + 1 là hợp số.

a Để N la so nguyen suy ra : 4n -5chia het 2n-1 2(2n-1)-3chia het 2n- 1 suy ra 2n-1 thuoc Ước của 3

22 tháng 3 2017

a. (4n-5)/(2n-1)=2 dư -3 vậy 2n-1 phải \(\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

xét 2n-1=1 n=1

2n-1=-1 n=0

2n-1=3 n=2

2n-1=-3 n=-1

vậy n=\(\left\{-1;0;1;2\right\}\)

b. n+2017= n+1+2016 mà 2016 chia hết cho 9 nên suy ra n+1 phải chia hết cho 9 thuộc ước của 9 (phần còn lại tự thử vào nha như câu a ý mình lười lắm)

c.vì n>3 nên n/3 dư 1 hoăc 2 ta co n= 3k+1 hoặc n= 3k+2

xét n= 3k+1 thì n^2+2018= (3k+1)^2+2018= 9k^2+1+2018=9k^2+2019=3(3k^2+673) chia hết cho 3 là hợp số

xét n=3k+2 thì n^2+2018=(3k+2)^2+2018=9k^2+4+2018=9k^2+2022=3(3k^2+674) chia hết cho 3 là hợp số

vậy n^2+2018 là hợp số

26 tháng 1 2017

\(*)\) Với giá trị nào của \(n\) thì \(n-10;n+10;n+60\) là những số nguyên tố:

- Xét \(n=3k\Rightarrow n+60\) là hợp số

- Xét \(n=3k+1\Rightarrow n-10⋮3\)

Để \(n+10;n-10;n+60\) là những số nguyên tố thì \(n-10=3\) hay \(n=13\)

- Xét \(n=3k+2\Rightarrow n+10\) là hợp số

\(*)\) Khi \(n=13\Rightarrow n+90\) là số nguyên tố

Vậy \(n=13\)

\(\Rightarrow\) Với giá trị của \(n\) để \(n-10;n+10;n+60\) là những số nguyên tố thì \(n+90\) cũng là số nguyên tố (Đpcm)

27 tháng 1 2017

Cảm ơn bạn nhiều nha vui

23 tháng 10 2016

a ) 13 . 5 + 26 = 91 \(\Rightarrow\) là hợp số vì 91 chia hết cho 7 và 13

b ) 23 . 29 + 31 = 698 \(\Rightarrow\) là hợp số

23 tháng 10 2016

a) Hợp số. Do \(13.15⋮13;26⋮13\Rightarrow13.15+26⋮13\) mà số đó lại lớn hơn 13.

b) Do số đó lớn hơn 2 mà tổng của 2 số lẻ là số chia hết cho 3 => Sô trên là hợp số

23 tháng 10 2017

\(\left(2^{19}.27^3+15.4^9.9^4\right):\left(6^9.2^{10}+12^{10}\right)\)

\(=\left[2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4\right]:\left[2^9.3^9.2^{10}+2^{10}.6^{10}\right]\)

\(=\left(2^{19}.3^9+3.5.2^{18}.3^8\right):\left(2^{19}.3^9+2^{10}.2^{10}.3^{10}\right)\)

\(=\left(2^{19}.3^9+5.3^9.2^{18}\right):\left(2^{19}.3^9+2^{20}.3^{10}\right)\)

\(=2^{18}.3^9.\left(1.2+5\right):2^{19}.3^9.\left(1+2.3\right)\)

\(=\left(2^{18}.3^9.7\right):\left(2^{18}.2.3^9.7\right)\)

\(=1:2\)

\(=0.5\)

24 tháng 3 2017

Ta có: \(\dfrac{5a+7b}{6a+5b}=\dfrac{29}{28}\\ \Rightarrow28\left(5a+7b\right)=29\left(6a+5b\right)\\ \Rightarrow140a+196b=174a+145b\\ =140a-174a=-196b+145b\\ =-31a=-51b\\ \Rightarrow\dfrac{a}{-51}=\dfrac{b}{-31}\\ \Rightarrow a:b=-51:\left(-31\right)\\ \Rightarrow\dfrac{a}{b}=\dfrac{-51}{-31}\Rightarrow\dfrac{a}{b}=\dfrac{51}{31}\\ \Rightarrow\dfrac{a}{b}=\dfrac{3}{2}\Rightarrow a=3;b=2\)

Vậy a=3 và b=2

21 tháng 7 2017

hân chéo ta được:

28(5a+7b)=29(6a+5b)28(5a+7b)=29(6a+5b)

\Leftrightarrow 140a+196b=174a+145b140a+196b=174a+145b

\Leftrightarrow 51b=34a51b=34a

Vì a,b là 2 số nguyên tố cùng nhau và là số tự nhiên

\RightarrowƯCLN(51,34)=17ƯCLN(51,34)=17

Từ đây ta tính được a=3;b=2a=3;b=2

p/s: Cách làm trên chưa thật hợp lý, bạn có thể trình bày sao cho hiểu là được nhé !

11 tháng 4 2017

Giống nhau:

- Đều là các số tự nhiên

Khác nhau:

-số nguyên tố tự nhiên chỉ có hai ước là 1 và chính nó

-Hợp số là số tự nhiên có nhiều hơn hai ước

Tích của hai số nguyên tố là hợp số bởi ngoài ước là 1 ra nó còn có ước là hai số nguyên tố đó nữa.

11 tháng 4 2017

thanks

23 tháng 10 2017

Bỏ mũ 2006 nha mọi người!

10 tháng 8 2018

Tuy có vẻ hơi muộn nhưng thôi leuleu

Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)

Thật vậy, ta có :

72004 với lũy thừa là 2004 ⋮ 4

⇒ 72004 = ( .......... 9 )

392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4

⇒ 392^94 = ( .......... 9 )

⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10

\(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

A=1/10.(72004-392^94) là số tự nhiên.

28 tháng 3 2017

Gọi phân số tối giản cần tìm là \(\dfrac{a}{b}\)

Ta có:\(\dfrac{a}{b}\):\(\dfrac{5}{11}\)=\(\dfrac{11a}{5b}\)

\(\dfrac{a}{b}\):\(\dfrac{11}{21}\)\(\dfrac{21a}{11b}\)

\(\dfrac{a}{b}\):\(\dfrac{25}{28}\)=\(\dfrac{28a}{25b}\)

Vì cả 3 thương trên là số tự nhiên nên a chia hết cho 5,11,25\(\)\(\Rightarrow\)a\(\in\)BCNN(5;11;25)\(\Rightarrow\)a=275

Do đó b\(\in\)ƯCLN(11,21,28)=1

Vậy phân số tối giản cần tìm là \(\dfrac{275}{1}\)

28 tháng 3 2017

Em cảm ơn chị nhiều nhiều nha!

23 tháng 10 2017

Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)

Nhân C với \(3^2\)ta có:

\(9S=3^2+3^4+3^6+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\)

\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)

Chứng minh:

Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)

\(\)UCLN(7;8)=1

\(\Rightarrow S⋮7\)

23 tháng 10 2017

Sửa lại 1 chút!

Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7