K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

a. Xét \(\Delta OAB:\)\(AB^2=2R^2\)

\(OA^2+OB^2=R^2+R^2=2R^2\)

Vậy \(\Delta OAB\) vuông tại O.

\(\Rightarrow l_{\stackrel\frown{AB}}=\frac{\pi R.90}{180}=\frac{1}{2}\pi R\)

Có: \(l_{\stackrel\frown{BC}}=l_{\stackrel\frown{AC}}-l_{\stackrel\frown{AB}}\)\(=\frac{\pi R.120}{180}-\frac{1}{2}\pi R\)\(=\frac{1}{6}\pi R\)

c.Ace Legona, Nguyễn Việt Lâm tính giùm mk.

NV
31 tháng 3 2019

O A C H

\(\widehat{AOC}=120^0\Rightarrow\widehat{AOH}=60^0\)

\(\Rightarrow AH=OA.sin\widehat{AOH}=R.sin60^0=\frac{R\sqrt{3}}{2}\)

\(\Rightarrow AC=2AH=R\sqrt{3}\)

O B C P

\(\widehat{BOC}=\widehat{AOC}-\widehat{AOB}=30^0\)

Kẻ \(CP\perp OB\Rightarrow\left\{{}\begin{matrix}CP=OC.sin\widehat{POC}=R.sin30^0=\frac{R}{2}\\OP=OC.cos\widehat{POC}=R.cos30^0=\frac{R\sqrt{3}}{2}\end{matrix}\right.\)

\(BP=OB-OP=R-\frac{R\sqrt{3}}{2}=\frac{R\left(2-\sqrt{3}\right)}{2}\)

Áp dụng Pitago cho tam giác BCP:

\(BC=\sqrt{BP^2+CP^2}=R\sqrt{2-\sqrt{3}}\)

21 tháng 5 2020

BẠN SAI RỒI CẮT NHAU TẠI E Ở NGOÀI ĐƯỜNG TRÒN MÀ

21 tháng 5 2020

dây cung AB và CD sao cho tia AB và tia CD cắt nhau tại điểm E ở ngoài đường tròn

8 tháng 2 2022

Tham khảo ha:

https://hoidap247.com/cau-hoi/522596

\(Ta.có:\\ Sđ\stackrel\frown{AB}_{lớn}+Sđ\stackrel\frown{AB}_{nhỏ}=360^0\\ mà.Sđ\stackrel\frown{AB}_{lớn}=2Sđ\stackrel\frown{AB}_{nhỏ}\\ Sđ\stackrel\frown{AB}_{nhỏ}=Sđ\widehat{AOB}\\ nên.Sđ\stackrel\frown{AB}_{nhỏ}=120^0\\ Kẻ.OH\perp AB\Rightarrow\widehat{AOH}=60^0\\ \Rightarrow\Delta AOH.là.nửa.\Deltađều\\ \Rightarrow OH=\dfrac{OA}{2}=\dfrac{R}{2}.và.AH=\dfrac{R\sqrt{3}}{2}\) 

\(Vì.OH\perp AB.nên.AB=2AH=2.\dfrac{R\sqrt{3}}{2}=R\sqrt{3}\\ Vậy.S_{OAB}=\dfrac{1}{2}AB.OH=\dfrac{R^2\sqrt{3}}{4}\)

NV
3 tháng 4 2020

\(\widehat{AOB}=30^0\Rightarrow AB=2R.sin15^0=\frac{\sqrt{6}-\sqrt{2}}{2}R\)

\(\Rightarrow\) Độ dài đường tròn đường kính AB: \(AB.\pi=\frac{\sqrt{6}-\sqrt{2}}{2}\pi R\)

13 tháng 11 2018

Xét tam giác OAC và tam giác OBD ta có :

\(\left\{{}\begin{matrix}OA=OB\\OC=OD\\\widehat{AOC}=\widehat{BOD}\end{matrix}\right.\)

\(\Rightarrow\Delta OAC=\Delta OBD\left(c-g-c\right)\)

\(\Rightarrow AC=BD\Rightarrow\stackrel\frown{AC}=\stackrel\frown{BD}\)